Rotary Actuator

CAT.ES20-253D

Vane Type

Size: 10, 15, 20, 30, 40

New A double vane type has been added for sizes 10 to 40.

Overall length

44% shorter

100 mm 55.6 mm

(Compared with the CDRB2□WU, Size 20)

Weight

48% lighter
222 g → 115 g
(Compared with the CDRB2□WU,
Size 20, Rotating angle 90°)


Features a compact body with a built-in

angle adjustment unit

and

auto switch unit

(Size: 20, 30, 40)

Overall length) 44% reduction

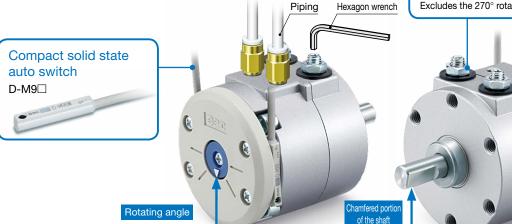
[mm]			
Size	CRB	CRB2	Reduction rate
10	46	58	21%
15	54.8	67	18%
20	55.6	100	44%
30	70	117.5	40%
40	84.2	137.2	39%

* Compared with the CRB2 with an angle adjustment unit and an auto switch

CRB CRB2 Overall 0 length Angle adjuster Overall length Reduction

Weight 48% reduction Auto switch unit

			rai
Size	CRB	CRB2	Reduction rate
10	39	42	7%
15	62	68	9%
20	115	222	48%
30	216	387	44%
40	380	631	40%


- * Compared with the CRB2 (Rotating angle: 90° with an angle adjustment unit and an auto switch unit)
- Sizes 10 and 15 have been compared without an angle adjustment unit.

Piping, wiring, and angle adjustment can be performed on the same side for easier mounting. Easy-to-adjust start and end positions with the angle adjustment bolts (as standard)

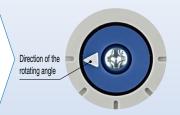
Rotating angle: 90°±10° 180°±10°

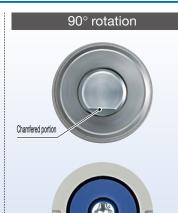
(Size: 20, 30, 40)

Excludes the 270° rotating angle type and the double vane type

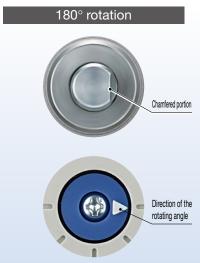
The position of the chamfered portion of the shaft can be easily checked using the rotating angle indicator.

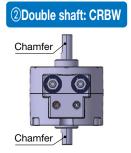
(Only for the CDRB with auto switch) Excludes the 270° rotating angle type and the double vane type

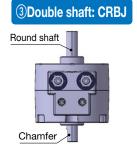

The position of the chamfered portion of the shaft

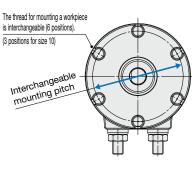

Rotating

angle


indicator

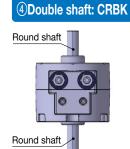




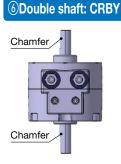

Shaft type variations

* If an auto switch is to be mounted, choose a single shaft (options ① and ⑤).

Single shaft: CRBS Chamfer

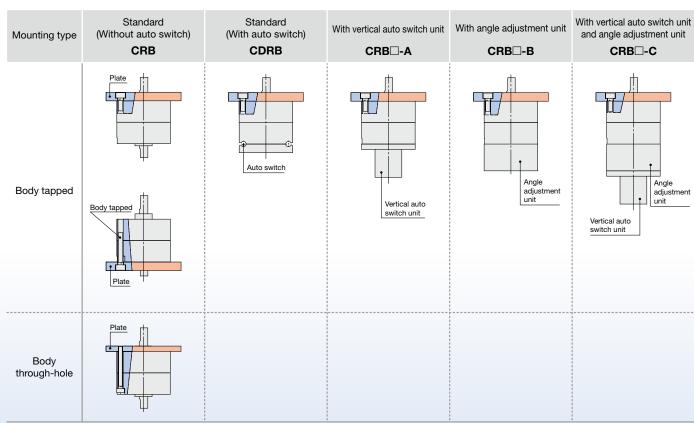




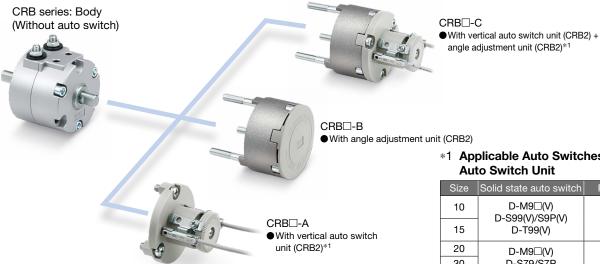



Interchangeable mounting

The mounting pitch and shaft configuration are the same as those for the CRB2.



Mounting



^{*} A flange mounting bracket assembly is available as an option. For details, refer to page 56.

Each of the units below for the CRB2 series can be mounted to the CRB series.

- The vertical auto switch unit and the angle adjustment unit are the same as those of the CRB2 series. Replacement of just the CRB body can be done during maintenance.
- Each of the units for the CRB2 series can be mounted to the CRB without an auto switch (CRBW).

Refer to pages 42 and 58 to 61 for details on the angle adjustment method, auto switch mounting, and adjustment.

*1 Applicable Auto Switches for the Vertical **Auto Switch Unit**

	Size	Solid state auto switch	Reed auto switch
	10	D-M9□(V) D-S99(V)/S9P(V)	D-97/93A
	15	D-399(V)/39F(V)	D-90/90A
	20	D-M9□(V)	D D70□
Ī	30	D-S79/S7P	D-R73□ D-R80□
ſ	40	D-T79□	D Neo⊡

Series Variations

Series variatio	Applicable auto Size			Applicable auto	Size			Size		Outpu	ıt shaft																
Model	Туре	switch	Vane type	10	15	20	30	40	Rotating angle		Double shaft																
CRB			Single vane						90° 180°																		
	(Without auto switch)		New Double vane						270° 90° 100°																		
CDRB	Standard (With auto switch)	D-M9□	Single vane						90° 180°	•	_																
CRB□-A	With vertical auto switch unit	Refer to the applicable auto switches shown in	Single vane						90° 180° 270°	•	_																
	(CRB2)	the table above.*1	New Double vane			•			90° 100°																		
CRB□-B									90°																		
	With angle adjustment unit	_	_	_	ent —	_	_	_	_	_	_	_	_	-	_	_	_	_	Single vane						180°	•	_
	(CRB2)								270°																		
			New Double		•	•	•	•	90°																		
CRB□-C			vane						100° 90°																		
	With vertical auto switch unit (CRB2) Refer to the applicable auto	auto switch unit (CRB2) With angle adjustment unit (CRB2) Refer to the applicable auto switches shown in the table above.*1	applicable auto switches shown in the table above.*1	Refer to the applicable auto	Single vane						180°	•	_														
	With angle adjustment unit the table a									270°																	
		(New Double vane						90° 100°																		

CONTENTS

Vane Type Rotary Actuator CRB Series

Model Selection	· р. :
● Vane Type Rotary Actuator	

CRB	Series
-----	--------

How to Order	p.	16
Specifications	p.	17
Construction	p.	19
Dimensions	p.	23

● Vane Type Rotary Actuator

With Vertical Auto Switch Unit

CRB□-A Series

How to Order	p.	32
Construction	p.	33
Dimensions	p.	34

● Vane Type Rotary Actuator

With Angle Adjustment Unit CRB□-B Series		
With Vertical Auto Switch Unit and Angle Adjustment Unit CF	RB□-C Series	
How to Order	p. 40	
Construction	p. 4	
Dimensions	p. 4	

Component Unit	p. 57
Auto Switch Mounting	p. 58
Specific Product Precautions	p. 62

Safety Instructions		Back cover
---------------------	--	------------

CONTENTS

1	Calculation of Moment of Inertia p. 7
	● Equation Table of Moment of Inertia ······ p. 7
	Calculation Example of Moment of Inertia
	● Graph for Calculating the Moment of Inertiap. 9
2	Calculation of Required Torque p. 10
	● Load Typep. 10
	● Effective Torque ·····p. 10
3	Confirmation of Rotation Time p. 10
4	Calculation of Kinetic Energy p. 11
	● Allowable Kinetic Energy and Rotation Time Adjustment Range······p. 11
	● Moment of Inertia and Rotation Time·····p. 12
5	Confirmation of Allowable Load p. 12
6	Calculation of Air Consumption and Required Air Flow Capacity p. 13
	●Inner Volume and Air Consumptionp. 14
	● Air Consumption Calculation Graph ·

Selection Procedures Selection Example Note List of Operating Conditions · Initially selected models The unit for the rotating angle is radian. Load 2 r = 10, 0.1 kg · Operating pressure [MPa] $180^{\circ} = \pi \text{ rad}$ 0.15 kg · Mounting orientation $90^{\circ} = \pi/2 \text{ rad}$ Load type Static load Resistance load Inertial load · Load dimensions [m] · Load mass [kg] · Rotation time [s] · Rotating angle [rad] Initially selected model: CRBS30-180 Operating pressure: 0.4 MPa Mounting orientation: Vertical Load type: Inertial load Rotation time: t = 0.6 s Rotating angle: θ = π rad (180°) **Calculation of Moment of Inertia** Calculate the inertial moment of Loads are generated from multiple parts. Inertial moment of load 1: In load. The inertial moment of each load is $I_1 = 0.15 \ x \frac{0.06^2 + 0.03^2}{12} \ + 0.15 \ x \ 0.025^2 = 0.00015$ calculated, and then totaled. Inertial moment of load 2: I2 $I_2 = 0.1 \times \frac{0.01^2}{2} + 0.1 \times 0.04^2 = 0.000165$ Total inertial moment: I $I = I_1 + I_2 = 0.000315 [kg \cdot m^2]$ Calculation of Required Torque Calculate the required torque for each When the resistance load is rotated, the Inertial load: Ta load type and confirm whether the required torque calculated from the inertial Ta = I·ώ values fall in the effective torque range. load must be added. $\dot{\omega} = \frac{2\theta}{t^2} \text{ [rad/s}^2\text{]}$ · Static load (Ts) Required torque T = Tf x (3 to 5) + Ta x 10Required torque: T T = Ta x 10 Required torque T = Ts · Resistance load (Tf) = 0.000315 x $\frac{2 \times \pi}{0.6^2}$ x 10 = 0.055 [N·m] Required torque T = Tf x (3 to 5)0.055 N·m < Effective torque OK Inertial load (Ta) Required torque T = Ta x 10 Confirmation of Rotation Time Confirm whether the time falls in Consider the time after converted in the 0.04 < t < 0.5the rotation time adjustment range. time per 90°. $t = 0.3 \text{ s}/90^{\circ} \text{ OK}$ (0.6 s/180° is converted in 0.3 s/90°.) Calculation of Kinetic Energy Kinetic energy: E Calculate the kinetic energy of the If the energy exceeds the allowable range, a $\mathsf{E} = \frac{1}{2} \cdot \mathrm{I} \cdot \omega^2$ load and confirm whether the suitable cushioning mechanism such as a energy is below the allowable shock absorber must be externally installed. range. E = $\frac{1}{2}$ x 0.000315 x $\left(\frac{2 \times \pi}{0.6}\right)^2$ = 0.01725 [J] Confirmation of Allowable Load Confirm whether the load applied If the load exceeds the allowable range, a Thrust load: M to the product is within the bearing or similar must be externally $0.15 \times 9.8 + 0.1 \times 9.8$ allowable range. installed. = 2.45 [N] 2.45 [N] < Allowable thrust load OK

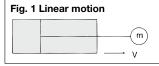
Calculation of Air Consumption and Required Air Flow Capacity

Air consumption and required air flow capacity are calculated when

necessary.

Calculation of Moment of Inertia

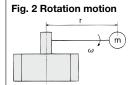
The moment of inertia is a value indicating the inertia of a rotating body, and expresses the degree to which the body is difficult to rotate, or difficult to stop.


It is necessary to know the moment of inertia of the load in order to determine the value of required torque or kinetic energy when selecting a rotary actuator.

Moving the load with the actuator creates kinetic energy in the load. When stopping the moving load, it is necessary to absorb the kinetic energy of the load with a stopper or a shock absorber.

The kinetic energy of the load can be calculated using the formulas shown in Fig. 1 (for linear motion) and Fig. 2 (for rotation motion).

In the case of the kinetic energy for linear motion, the formula (1) shows that when the velocity ${f V}$ is constant, it is proportional to the mass m. In the case of rotation motion, the formula (2) shows that when the angular velocity ω is constant, it is proportional to the moment of inertia.

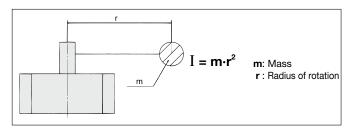

Linear motion

$$\mathbf{E} = \frac{1}{2} \cdot \mathbf{m} \cdot \mathbf{V}^2 \cdot \cdots \cdot (1)$$

- E: Kinetic energy
- m: Load mass

Rotation motion

$$\mathbf{E} = \frac{1}{2} \cdot \mathbf{I} \cdot \omega^2 = \frac{1}{2} \cdot \mathbf{m} \cdot \mathbf{r}^2 \cdot \omega^2 \cdot \cdots \cdot (2)$$


- E: Kinetic energy
- I : Moment of inertia (= m·r²)
- ω: Angular velocity
- m: Mass
- r: Radius of rotation

As the moment of inertia is proportional to the squares of the mass and the radius of rotation, even when the load mass is the same, the moment of inertia will be squared as the radius of rotation grows bigger. This will create greater kinetic energy, which may result in damage to the product.

When there is rotation motion, product selection should be based not on the load mass of the load, but on the moment of inertia.

Moment of Inertia Formula

The basic formula for finding a moment of inertia is shown below.

This formula represents the moment of inertia for the shaft with mass m, which is located at distance r from the shaft.

For actual loads, the values of the moment of inertia are calculated depending on configurations, as shown below.

I: Moment of inertia

- ⇒ p. 8 Calculation example of moment of inertia
- ⇒ p. 9 Graph for calculating the moment of inertia

Equation Table of Moment of Inertia

1. Thin shaft

Position of rotational axis: Perpendicular to the shaft through the center of gravity

$$I = \mathbf{m} \cdot \frac{\mathbf{a}^2}{12}$$

Position of rotational axis: Parallel to side b and through the center of gravity

$$I = m \cdot \frac{a^2}{12}$$

3. Thin rectangular plate (Including rectangular parallelepiped)

Position of rotational axis: Perpendicular to the plate through the center of gravity

$$I = \mathbf{m} \cdot \frac{\mathbf{a}^2 + \mathbf{b}^2}{12}$$

4. Round plate (Including column)

Position of rotational axis: Through the center axis

5. Solid sphere

Position of rotational axis: Through the center of diameter

$$I = \mathbf{m} \cdot \frac{2\mathbf{r}^2}{5}$$

6. Thin round plate

Position of rotational axis: Through the center of diameter

$$I = \mathbf{m} \cdot \frac{\mathbf{r}^2}{4}$$

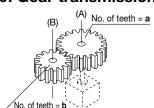
7. Cylinder

Position of rotational axis: Through the center of diameter and gravity

$$I = \mathbf{m} \cdot \frac{3\mathbf{r}^2 + \mathbf{a}^2}{12}$$

m: Load mass

8. When the rotational axis and load center of gravity are not consistent

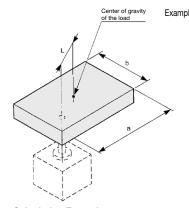


$$I = K + m \cdot L^2$$

K: Moment of inertia around the load center of gravity

4. Round plate $\mathbf{K} = \mathbf{m} \cdot \frac{\mathbf{r}^2}{2}$

9. Gear transmission



- $^{(A)}$ No. of teeth = **a** 1. Find the moment of inertia IB for the rotation of shaft (B).
 - 2. IB is converted to the moment of inertia IA for the rotation of the shaft (A).

$$IA = (\frac{a}{b})^2 \cdot IB$$

Calculation Example of Moment of Inertia

If the shaft is located at a desired point of the load:

Example: 1 If the load is the thin rectangular plate: Find the center of gravity of the load as I_1 , a provisional shaft.

I₁, a provisional sha

$$I_1 = \mathbf{m} \cdot \frac{\mathbf{a}^2 + \mathbf{b}^2}{12}$$

 $\ensuremath{\text{\textcircled{2}}}$ Find the actual moment of inertia I_2 around the shaft, with the premise that the mass of the load itself is concentrated in the load's center of gravity point.

$$I_2 = m \cdot L^2$$

3 Find the actual moment of inertia I.

$$I = I_1 + I_2$$

m: Load mass

L : Distance from the shaft to the load's center of gravity.

Calculation Example

Lever: I

$$\begin{aligned} &a = 0.2 \text{ m, b} = 0.1 \text{ m, L} = 0.05 \text{ m, m} = 1.5 \text{ kg} \\ &I_1 = 1.5 \times \frac{0.2^2 + 0.1^2}{12} = 6.25 \times 10^{-3} & \text{kg·m}^2 \\ &I_2 = 1.5 \times 0.05^2 = 3.75 \times 10^{-3} & \text{kg·m}^2 \\ &I = (6.25 + 3.75) \times 10^{-3} = 0.01 & \text{kg·m}^2 \end{aligned}$$

If a lever is attached to the shaft and a cylinder and a gripper are mounted to the tip of the lever:

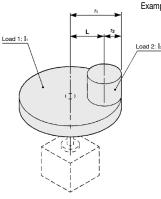
Cylinder: I2

Example: ① Find the lever's moment of inertia:

② Find the cylinder's moment of inertia:

$$I_2 = \mathbf{m_2} \cdot \frac{(\mathbf{D}/2)^2}{2} + \mathbf{m_2} \cdot \mathbf{L}^2$$

3 Find the gripper's moment of inertia:


$$I_3 = m_3 \cdot \frac{a^2 + b^2}{12} + m_3 \cdot L^2$$

4 Find the actual moment of inertia:

$$I = I_1 + I_2 + I_3$$

m₁: Mass of lever m₂: Mass of cylinder .**m**₃: Mass of gripper /

If the load is divided into multiple loads:

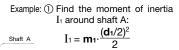
Example: 1) If the load is divided into the 2 cylinders: The center of gravity of load 1 matches the shaft The center of gravity of load 2 differs from the shaft Find the moment of inertia of load 1:

$$I_1 = m_1 \cdot \frac{r_1^2}{2}$$

② Find the moment of inertia of load 2:

$$I_2 = \mathbf{m}_2 \cdot \frac{\mathbf{r_2}^2}{2} + \mathbf{m}_2 \cdot \mathbf{L}^2$$

③ Find the actual moment of inertia I:


$$I = I_1 + I_2$$

m₁, m₂: Mass of loads 1 and 2 r1, r2: Radius of loads 1 and 2 L: Distance from the shaft to the center of gravity of load 2

Calculation Example

$$\begin{split} m_1 &= 2.5 \text{ kg, } m_2 = 0.5 \text{ kg, } r_1 = 0.1 \text{ m, } r_2 = 0.02 \text{ m, } L = 0.08 \text{ m} \\ I_1 &= 2.5 \times \frac{0.1^2}{2} = 1.25 \times 10^{-2} & \text{kg·m}^2 \\ I_2 &= 0.5 \times \frac{0.02^2}{2} + 0.5 \times 0.08^2 = 0.33 \times 10^{-2} & \text{kg·m}^2 \\ I &= (1.25 + 0.33) \times 10^{-2} = 1.58 \times 10^{-2} & \text{kg·m}^2 \end{split}$$

If a load is rotated through the gears:

 $I_{\mbox{\scriptsize 3}},$ and $I_{\mbox{\scriptsize 4}}$ around shaft B:

I₂ =
$$m_2 \cdot \frac{(d_2/2)^2}{2}$$

$$I_3 = \mathbf{m}_3 \cdot \frac{\mathbf{a}_3 - \mathbf{a}_4}{2}$$

$$I_4 = \mathbf{m}_4 \cdot \frac{1}{12}$$
 $I_B = I_2 + I_3 + I_4$

 $\ensuremath{\mathfrak{G}}$ Replace the moment of inertia $I_{\ensuremath{\mathbb{B}}}$ around shaft B with the moment of inertia I_{A} around shaft A.

> $I_A = (A/B)^2 \cdot I_B$ [A/B: Ratio of the number of teeth]

4 Find the actual moment of inertia:

$$I = I_1 + I_A$$

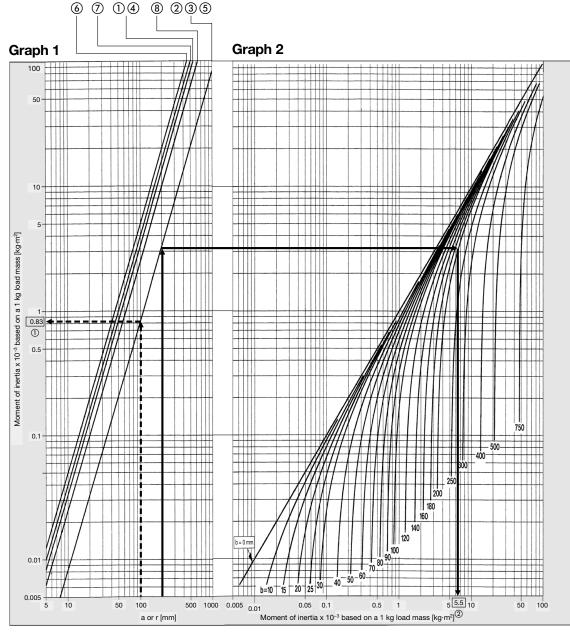
m₁: Mass of gear 1 m₂: Mass of gear 2 m₃: Mass of cylinder m₄: Mass of gripper

Calculation Example

$$\begin{split} L &= 0.2 \text{ m, } \phi D = 0.06 \text{ m, } a = 0.06 \text{ m, } b = 0.03 \text{ m} \\ m_1 &= 0.5 \text{ kg, } m_2 = 0.4 \text{ kg, } m_3 = 0.2 \text{ kg} \\ I_1 &= 0.5 \times \frac{0.2^2}{3} = 0.67 \times 10^{-2} & \text{kg} \cdot \text{m}^2 \\ I_2 &= 0.4 \times \frac{(0.06/2)^2}{2} + 0.4 \times 0.2^2 = 1.62 \times 10^{-2} & \text{kg} \cdot \text{m}^2 \\ I_3 &= 0.2 \times \frac{0.06^2 + 0.03^2}{12} + 0.2 \times 0.2^2 = 0.81 \times 10^{-2} & \text{kg} \cdot \text{m}^2 \\ I &= (0.67 + 1.62 + 0.81) \times 10^{-2} = 3.1 \times 10^{-2} & \text{kg} \cdot \text{m}^2 \end{split}$$

Calculation Example

I = (1.25+1.04)


 $d_1 = 0.1 \text{ m}, d_2 = 0.05 \text{ m}, D = 0.04 \text{ m}, a = 0.04 \text{ m}, b = 0.02 \text{ m}$ $m_1 = 1$ kg, $m_2 = 0.4$ kg, $m_3 = 0.5$ kg, $m_4 = 0.2$ kg, Ratio of the number of teeth = 2 = 1.25 x 10⁻³ kg·m² $I_2 = 0.4 \text{ x} \frac{(0.05/2)^2}{5}$ $= 0.13 \times 10^{-3} \text{ kg} \cdot \text{m}^2$ $= 0.1 \times 10^{-3} \text{ kg} \cdot \text{m}^2$ $I_4 = 0.2 \text{ x} \frac{0.04^2 + 0.02^2}{12} = 0.03 \text{ x} 10^{-3} \text{ kg} \cdot \text{m}^2$ $I_B = (0.13 + 0.1 + 0.03) \times 10^{-3} = 0.26 \times 10^{-3} \text{ kg} \cdot \text{m}^2$ $x \cdot 10^{-3} = 1.04 \times 10^{-3} \text{ kg} \cdot \text{m}^2$ $I_A = 2^2 \times 0.26$

 $x \cdot 10^{-3} = 2.29 \times 10^{-3} \text{ kg} \cdot \text{m}^2$

Graph for Calculating the Moment of Inertia

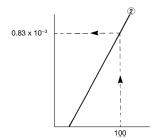
Load Shapes (1) 2 3 (4) (5) 6 7 (8)

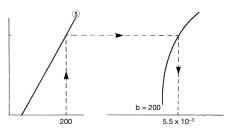
1. How to read the graph: Only when the dimension of the load is "a" or "r"

[Example] When the load shape is ②, a = 100 mm, and the load mass is 0.1 kg

In graph 1, the point at which the vertical line of a = 100 mm and the line of the load shape (2) intersect indicates that the moment of inertia of the 1 kg mass is $0.83 \times 10^{-3} \text{ kg} \cdot \text{m}^2$.

Since the load mass is 0.1 kg, the actual moment of inertia is 0.83 x 10^{-3} x 0.1 = 0.083 x 10^{-3} kg·m²


(Note: If "a" is divided into "a:a2", the moment of inertia can be found by calculating them separately.)



[Example] When the load shape is 5, a = 200 mm, b = 200 mm, and the load mass is 0.5 kg

In graph 1, find the point at which the vertical line of a = 200 mm and the line of the load shape 3 intersect. Move this intersection point to graph 2, and the point at which it intersects with the curve of b = 200 mm indicates that the moment of inertia of the 1 kg mass is 5.5×10^{-3} kg·m².

Since the load mass is 0.5 kg, the actual moment of inertia is $5.5 \times 10^{-3} \times 0.5 = 2.75 \times 10^{-3} \text{ kg} \cdot \text{m}^2$

Calculation of Required Torque

Load Type

The calculation method of required torque varies depending on the load type. Find the required torque referring to the table below.

Load type								
Static load: Ts	Resistance load: Tf	Inertial load: Ta						
When the pressing force is necessary (clamp, etc.)	When friction force or gravity is applied to the rotation direction	When the load with inertia is rotated						
L F	Gravity acts Compared to the content of the cont	The center of rotation and the center of gravity are corresponding The rotational axis is vertical (up and down)						
Ts = F·L Ts: Static load [N·m] F: Clamp force [N] L: Distance from the center of rotation to clamp [m]	When gravity acts to the rotation direction to the rotation direction $ Tf = m \cdot g \cdot L $ $ Tf : Resistance load [N \cdot m] $	$\begin{aligned} \textbf{Ta} &= I \cdot \dot{\omega} = I \cdot \frac{2\theta}{t^2} \\ \textbf{Ta} &: \text{Inertial load [N·m]} \\ I &: \text{Moment of inertia [kg·m²]} \\ \dot{\omega} &: \text{Angular acceleration [rad/s²]} \end{aligned}$						
	 m: Load mass [kg] g: Gravitational acceleration 9.8 [m/s²] L: Distance from the center of rotation to the gravity or friction force acting point [m] μ: Coefficient of friction 	θ : Rotating angle [rad] t : Rotation time [s]						
Required torque T = Ts	Required torque $\mathbf{T} = \mathbf{Tf} \mathbf{x} (3 \text{ to } 5)^{*1}$	Required torque T = Ta x 10*1						

 $\boldsymbol{\cdot}$ Resistance loads \rightarrow Gravity or friction applies in the rotation direction. Example 1) The axis of rotation is in a horizontal (lateral) direction, and the center of rotation and center of gravity of the load are not the same.

Example 2) The load slips against the floor while rotating.

- * The required torque equals the total of the resistance load and inertial load.
 - $T = Tf \times (3 \text{ to } 5) + Ta \times 10$

- ${\boldsymbol{\cdot}}$ Non-resistance loads \to Gravity or friction does not apply in the rotation direction. Example 1) The axis of rotation is in a perpendicular (vertical) direction. Example 2) The axis of rotation is in a horizontal (lateral) direction, and the center of rotation and center of gravity of the load are the same.
 - * The required torque equals the inertial load only. $T = Ta \times 10$
- *1 In order to adjust the velocity, it is necessary to have a margin of adjustment for Tf and Ta.

Effective Torque

[N·m]										
		a]	Vano typo	Size						
1.0	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	Vane type	Size
_	_	_	0.18	0.15	0.12	0.09	0.06	0.03	Single vane	10
_	_	_	0.37	0.31	0.25	0.19	0.13	0.07	Double vane	10
_	_	_	0.46	0.39	0.32	0.24	0.17	0.10	Single vane	15
_	_	_	0.93	0.79	0.65	0.48	0.34	0.20	Double vane	15
_	_	_	0.99	0.84	0.70	0.54	0.39	0.23	Single vane	20
_	_	_	2.06	1.76	1.45	1.13	0.81	0.47	Double vane	20
0 3.73	3.40	3.03	2.58	2.19	1.83	1.39	1.04	0.62	Single vane	20
3 7.49	6.83	6.09	5.20	4.40	3.70	2.80	2.10	1.26	Double vane	30
3 7.86	7.03	6.20	5.38	4.55	3.73	2.90	2.07	1.21	Single vane	40
0 15.80	14.10	12.50	10.89	9.24	7.59	5.94	4.30	2.58	Double vane	40
3	6.83 7.03	6.09 6.20	5.20 5.38	4.40 4.55	3.70 3.73	2.80	2.10	1.26 1.21	Double vane Single vane	30 40

Confirmation of Rotation Time

Rotation time adjustment range is specified for each product for stable operation. Set the rotation time within the range shown in the table on the right.

If the product is used in a low speed range which is outside the adjustment range, it may cause the stick-slip phenomenon, or the product to stick or stop.

Vana tuna	Size		Rotation time adjustment range [s/90°]								
Vane type	Size	0.	02 0	.03 0	.04	0.05	0.07	0.1	0.2	C).5
10, 15, 20			0.03 to 0.5								
Single vane	30							0.04	to 0.5		
	40								0.07	to 0.5	
Double vane	10, 15, 20							0.0	05 to 0	.5	
Double vane	30, 40								0	.1 to 0.5	

Calculation of Kinetic Energy

Kinetic energy is generated when the load rotates. Kinetic energy applies on the product at the operating end as inertial force, and may cause the product to damage. In order to avoid this, the value of allowable kinetic energy is determined for each product. Find the kinetic energy of the load, and verify that it is within the allowable range for the product in use.

Angular Velocity

 $\omega = \frac{2\theta}{t}$

ω: Angular velocity [rad/s] θ : Rotating angle [rad]

t: Rotation time [s]

Kinetic Energy

Use the following formula to calculate the kinetic energy of

$$\mathbf{E} = \frac{1}{2} \cdot I \cdot \omega^2$$

E: Kinetic energy [J]

I: Moment of inertia [kg·m²]

ω: Angular velocity [rad/s]

⇒Below Allowable kinetic energy and rotation time adjustment range

⇒p. 12 Moment of inertia and rotation time

To find the rotation time when kinetic energy is within the allowable range for the product, use the following formula.

When the angular velocity is $\omega = \frac{2\theta}{•}$

$$t \geq \sqrt{\frac{2 \cdot I \cdot \theta^2}{\text{E}}}$$

t: Rotation time [s]

I : Moment of inertia [kg·m²]

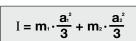
θ: Rotating angle [rad]

E: Allowable kinetic energy [J]

Allowable Kinetic Energy and Rotation Time Adjustment Range

Single vane

Size	Allowable kinetic energy [J]	Adjustable range of rotation time safe in operation [\$/90°]
10	0.00015	
15	0.001	0.03 to 0.5
20	0.003	
30	0.020	0.04 to 0.5
40	0.040	0.07 to 0.5


Calculation Example

Load form: Round rod

Length of a, part : 0.12 m Rotating angle: 90°

: 0.04 m Rotation time : 0.9 s Length of a₂ part

Mass of a, part (= m,): 0.09 kg Mass of a2 part (= m2): 0.03 kg

(Step 1) Find the angular velocity ω .

$$\omega = \frac{2\theta}{t} = \frac{2}{0.9} \left(\frac{\pi}{2}\right)$$
$$= 3.489 \text{ rad/s}$$

(Step 2) Find the moment of inertia I.

$$\begin{split} I &= \frac{m_1 \cdot a_1^2}{3} + \frac{m_2 \cdot a_2^2}{3} \\ &= \frac{0.09 \times 0.12^2}{3} + \frac{0.03 \times 0.04^2}{3} \\ &= 4.48 \times 10^{-4} \text{kg} \cdot \text{m}^2 \end{split}$$

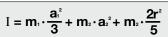
(Step 3) Find the kinetic energy E.

$$E = \frac{1}{2} \cdot I \cdot \omega^2 = \frac{1}{2} \times 4.48 \times 10^{-4} \times 3.489^2$$
$$= 0.00273 \text{ J}$$

Double vane

Size	Allowable kinetic energy [J]	Adjustable range of rotation time safe in operation [\$/90°]
10	0.0003	
15	0.0012	0.05 to 0.5
20	0.0033	
30	0.020	0.1 to 0.5
40	0.040	0.1 to 0.5

Calculation Example


If the model to be used has been determined, find the threshold rotation time in which the rotary actuator can be used in accordance with the allowable kinetic energy of that model.

Model used : CRB30

Allowable kinetic energy: 0.02 J (Refer to the table above.)

Load form : Refer to the figure below.

Rotating angle

a₁: 0.1 m a₂: 0.12 m m₁: 0.02 kg **m**₂: 0.02 kg r: 0.03 m

(Step 1) Find the moment of inertia.

$$I = \frac{m_1 \cdot a_1^2}{3} + m_2 \cdot a_2^2 + \frac{m_2 \cdot 2r^2}{5}$$

$$= \frac{0.02 \times 0.1^2}{3} + 0.02 \times 0.12^2 + \frac{0.02 \times 2 \times 0.03^2}{5}$$

$$= 3.6 \times 10^4 \text{ kg} \cdot \text{m}^2$$

(Step 2) Find the rotation time.

$$t \geq \sqrt{\frac{2 \cdot I \cdot \theta^2}{E}} = \sqrt{\frac{2 \times 3.6 \times 10^{\text{-4}} x \left(\pi/2\right)^2}{0.02}} = 0.30 \text{ s}$$

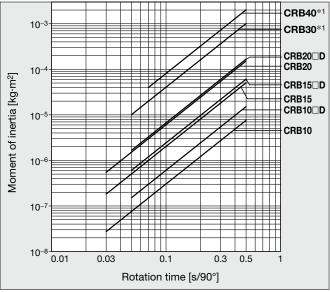
It is therefore evident that there will be no problem if it is used with a rotation time of less than 0.30 s. However, according to the table above, the maximum value of rotation time for stable operation is 0.5 s. Thus, the rotation time should be within the range of $0.30 \le t \le 0.50$.

Moment of Inertia and Rotation Time

How to read the graph

Example 1) When there are constraints on the moment of inertia of the load and the rotation time:

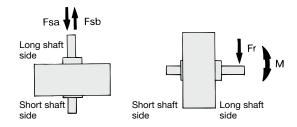
We can see from graph 3 that to operate the load at a 1 x 10-4 kg·m² moment of inertia and at the rotation time setting of 0.3 ^S/90°. the model will be CRB□30.


Example 2) When there are constraints on the moment of inertia of the load but not the rotation time:

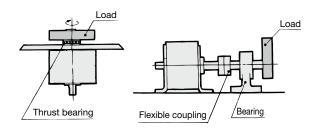
We can see from graph 3 that to operate the load at a 1 x 10⁻⁵ kg·m² moment of inertia:

CRB15 will be 0.22 to 0.5 S/90°. CRB20 will be 0.13 to 0.5 S/90°.

[Remarks] As for the rotation times in graph 3, the lines in the graph indicate the adjustable speed ranges. However, if the speed is adjusted toward the low-speed end beyond the range of the line, the actuator may stick, or, in the case of the vane type, the operation may stop.


Graph 3 Size: 10 to 40

*1 For the double vane type CRB30 and CRB40, the rotation time range is from 0.1 to 0.5 [s/90°].


Confirmation of Allowable Load

Provided that a dynamic load is not generated, a load in the axial direction can be applied up to the value that is indicated in the table below. However, applications in which the load is applied directly to the shaft should be avoided as much as possible.

Vane Type

Series	Size	Load direction							
Series		Fsa [N]	Fsb [N]	Fr [N]	M [N·m]				
	10	9.8	9.8	14.7	0.13				
	15	9.8	9.8	14.7	0.17				
CRB	20	19.6	19.6	24.5	0.33				
	30	24.5	24.5	29.4	0.42				
	40	40	40	60	1.02				

Calculation of Air Consumption and Required Air Flow Capacity

Air consumption is the volume of air which is expended by the rotary actuator's reciprocal operation inside the actuator and in the piping between the actuator and the switching valve, etc. This is necessary for selection of a compressor and for calculation of its running cost. Required air volume is the air volume necessary to make a rotary actuator operate at a required speed. It requires calculation when selecting the upstream piping diameter from the switching valve and air line equipment.

* To facilitate your calculation, the table below provide the air consumption volume (Qcr) that is required each time an individual rotary actuator makes a reciprocal movement.

Formula

Air consumption volume

Formula

Regarding QCR: With vane type, use formula (1) because the inner volume varies when ports A and B are pressurized.

QCR =
$$(VA + VB) \times \left(\frac{P + 0.1}{0.1}\right) \times 10^{-3}$$
 (1)
QCP = $2 \times a \times L \times \left(\frac{P}{0.1}\right) \times 10^{-6}$ (2)

[L (ANR)] QCR = Amount of air consumption of rotary actuator

QCP = Amount of air consumption of tube or piping

[L (ANR)]

[MPa]

[mm]

V_B = Inner volume of the rotary actuator (when pressurized from B port) [cm³] P = Operating pressure

V_A = Inner volume of the rotary actuator (when pressurized from A port) [cm³]

 $\mathbf{Q}_{r} = \left\{ \mathbf{V}_{B} \times \left(\frac{\mathbf{P} + 0.1}{0.1} \right) \times 10^{3} + \mathbf{a} \times \mathbf{L} \times \left(\frac{\mathbf{P}}{0.1} \right) \times 10^{6} \right\} \times \frac{60}{t} \cdots (5)$

 $\mathbf{Q}_{r} = \left\{ \mathbf{V}_{A} \times \left(\frac{\mathbf{P} + 0.1}{0.1} \right) \times 10^{3} + \mathbf{a} \times \mathbf{L} \times \left(\frac{\mathbf{P}}{0.1} \right) \times 10^{6} \right\} \times \frac{60}{t} \cdots (6)$

V_A = Inner volume of the rotary actuator (when pressurized from A port)

[cm³] = Inner volume of the rotary actuator (when pressurized from B port) Vв [cm³]

L = Length of piping [mm] a = Inner sectional area of piping [mm²]

[S]

Ρ = Operating pressure t = Total time for rotation

② Required air flow capacity

Q_r = Consumed air volume for rotary actuator

L = Length of piping

= Inner sectional area of piping

 $[mm^2]$ = Amount of air consumption required for one cycle of the rotary actuator [L (ANR)]

To select a compressor, it is important to select one that has plenty of margin to accommodate the total air volume that is consumed by the pneumatic actuators that are located downstream. The total air consumption volume is affected by the leakage in the tube, the consumption in the drain valves and pilot valves, as well as by the reduction in air volume due to reduced temperature.

Formula

$$\mathbf{Q}_{c2} = \mathbf{Q}_{c} \times \mathbf{n} \times No.$$
 of actuators x Safety factor...(4)

Qc2 = Amount of air from a compressor **n** = Actuator reciprocations per minute [L/min (ANR)]

Safety factor: From 1.5

Internal Cross Section of Tubing and Steel Tube

Nominal	O.D. [mm]	I.D. [mm]	Internal cross section a [mm ²]		
T□ 0425	4	2.5	4.9		
T□ 0604	6	4	12.6		
TU 0805	8	5	19.6		
T□ 0806	8	6	28.3		
1/8B	_	6.5	33.2		
T□ 1075	10	7.5	44.2		
TU 1208	TU 1208 12		50.3		
T□ 1209	12	9	63.6 66.5		
1/4B	_	9.2			
TS 1612	16	12	113		
3/8B	_	12.7	127		
T□ 1613	16	13	133		
1/2B	_	16.1	204		
3/4B	_	21.6	366		
1B	_	27.6	598		

⇒p. 15 Air consumption calculation graph

Inner Volume and Air Consumption

Single v	ane											[L (ANR)]
Size	Rotating angle	Inner vol	ume [cm³]				Operati	ng pressu	re [MPa]			
Size	(degree)	Press. Va port	Press. VB port	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
	90	0.5	0.8	0.004	0.005	0.007	0.008	0.009	0.010	_	_	_
10	180	1.1	1.1	0.007	0.009	0.011	0.013	0.015	0.018	_	_	_
	270	1.5	1.5	0.009	0.012	0.015	0.018	0.021	0.024	_	_	_
	90	1.4	2.1	0.011	0.014	0.018	0.021	0.025	0.028	_	_	_
15	180	2.8	2.8	0.017	0.022	0.028	0.034	0.039	0.045	_	_	_
	270	3.8	3.8	0.023	0.030	0.038	0.046	0.053	0.061	_	_	_
	90	3.6	5	0.026	0.034	0.043	0.052	0.060	0.069	_	_	_
20	180	6.5	6.5	0.039	0.052	0.065	0.078	0.091	0.104	_	_	_
	270	7.9	7.9	0.047	0.063	0.079	0.095	0.111	0.126	_	_	_
	90	10.1	13.3	0.070	0.094	0.117	0.140	0.164	0.187	0.211	0.234	0.257
30	180	17.4	17.4	0.104	0.139	0.174	0.209	0.244	0.278	0.313	0.348	0.383
	270	19	19	0.114	0.152	0.190	0.228	0.266	0.304	0.342	0.380	0.418
	90	21.9	30	0.156	0.208	0.260	0.311	0.363	0.415	0.467	0.519	0.571
40	180	37.5	37.5	0.225	0.300	0.375	0.450	0.525	0.600	0.675	0.750	0.825
	270	41.6	41.6	0.250	0.333	0.416	0.499	0.582	0.666	0.749	0.832	0.915

Rotary Actuators Model Selection

Double vane [L (ANF										[L (ANR)]		
Size	Rotating angle	Inner volu	ume [cm³]	Operating pressure [MPa]								
Size	(degree)	Press. Va port	Press. V в port	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
10	90	0.9	0.9	0.005	0.007	0.009	0.011	0.013	0.014	_	_	_
10	100	1.0	1.0	0.006	0.008	0.010	0.012	0.014	0.016	_	_	_
15	90	2.6	2.6	0.016	0.021	0.026	0.031	0.036	0.042	_	_	_
13	100	2.7	2.7	0.016	0.022	0.027	0.032	0.038	0.043	_	_	_
20	90	5.5	5.5	0.033	0.044	0.055	0.066	0.077	0.088	_	_	_
20	100	5.6	5.6	0.034	0.045	0.056	0.067	0.078	0.090	_	_	_
30	90	13.0	13.0	0.078	0.104	0.130	0.156	0.182	0.208	0.234	0.260	0.286
30	100	14.0	14.0	0.084	0.112	0.140	0.168	0.196	0.224	0.252	0.280	0.308
40	90	29.2	29.2	0.175	0.234	0.292	0.350	0.409	0.467	0.526	0.584	0.642
40	100	30.0	30.0	0.180	0.240	0.300	0.360	0.420	0.480	0.540	0.600	0.660

Air Consumption Calculation Graph

Using graph 4, air consumption volume of the rotary actuator is found. From the point of intersection between the inner volume and the operating pressure (slanted line) and then looking to the side (left side) direction, the air consumption volume for 1 cycle operation of a rotary actuator is found.

Step 2

Using graph 5, air consumption volume of tubing or steel tube is found.

(1) First determine the point of intersection between the operating pressure (slanted line) and the piping length, and then go up the vertical line perpendicularly from there. (2) From the point of intersection of an operating piping tube inside diameter (slanted line),

then look to the side (left or right) to find the required air consumption volume for piping.

Step 3

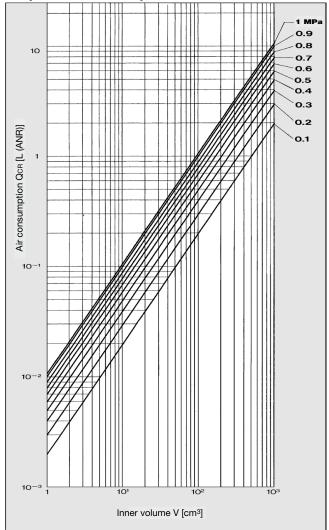
Total air consumption volume per minute is found as follows:

(Air consumption volume of a rotary actuator [unit: L (ANR)] + Tubing or steel tube's air consumption volume) x Cycle times per minute x Number of rotary actuators = Total air consumption volume

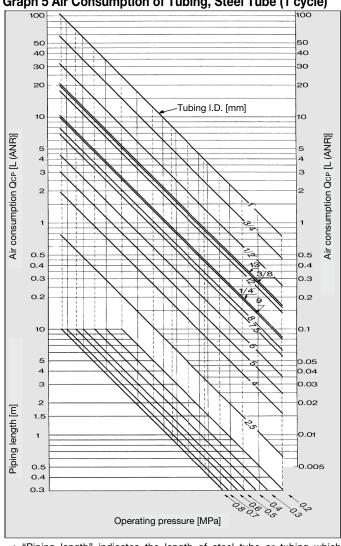
Example) When 10 units of a CRBS30-180 are used at a pressure of 0.5 MPa, what is the air consumption of their 5 cycles per minute? (Piping between the actuator and switching valve is a tube with an inside diameter of 6 mm and length of 2 m.)

- 1. Operating pressure 0.5 MPa → Inner volume of CRBS30-180 34.8 cm³ → Air consumption volume 0.21 L (ANR)
- 2. Operating pressure 0.5 MPa→ Piping length 2 m → Inside diameter 6 mm → Air consumption volume 0.56 L (ANR)
- 3. Total air consumption volume = $(0.21 + 0.56) \times 5 \times 10 = 38.5 \text{ L/min (ANR)}$

Rotating angle Size 90° 270° 180° 10 1.3 2.2 3 15 3.5 5.6 7.6 20 8.6 15.8 13 30 23.4 34.8 38 40 51.9 75 83.2


1 cycle [cm3]

Double vane		1 cycle [cm ³]					
Size	Rotating angle						
Size	90°	100°					
10	1.8	2					
15	5.2	5.4					
20	11	11.2					
30	26	28					
40	58.4	60					


Air Consumption Table

Single vane

Graph 4 Air Consumption

Graph 5 Air Consumption of Tubing, Steel Tube (1 cycle)

- "Piping length" indicates the length of steel tube or tubing which connects rotary actuator and switching valves (solenoid valves, etc.).
- Refer to page 13 for the size of tubing and steel tube (inside diameter and outside diameter).

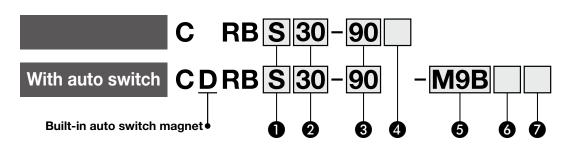
90°

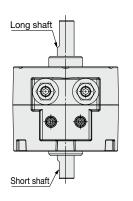
180°

270°

909

100°


Vane Type Rotary Actuator


CRB Series

Size: 10, 15, 20, 30, 40

How to Order

4 Vane type

Number of auto

switches

Single vane Double vane

Nil

Nil

S

Shaft type

Sym-	Shaft type	Shaft type Shaft-end shape				
bol	Shall type	Long shaft	Short shaft			
S	Single shaft*1	Single flat*2	_			
W	Double shaft	Single flat*2 Single flat				
J *3	Double shaft	For details, refer to page 29.				
K *3	Double shaft					
T *3	Single shaft*1					
Y *3	Double shaft	1				

- *1 When an auto switch is mounted to the rotary actuator, only options "S" and "T" are available.
- *2 Size 40 has a parallel key instead of a cham-
- fered portion.

 *3 Options "J," "K," "T," and "Y" are produced upon receipt of order.

5 Auto switch

Nil	Without auto switch (E	Built-in magnet)

For applicable auto switches, refer to the table below.

2 Size

10	0: 1	90
15	Single vane	180
20	varie	270
30	Double	90
40	vane	100

For the type with an auto switch, only the 90° or 180° single vane type is available.

3 Rotating angle

Nil	Without auto switch (Built-in magnet)

6 Lead wire length

Nil	Grommet/Lead wire: 0.5 m
М	Grommet/Lead wire: 1 m
L	Grommet/Lead wire: 3 m
Z *1	Grommet/Lead wire: 5 m

*1 The 5 m lead wire is produced upon receipt of order.

Refer to pages 58 to 61 for actuators with auto switches.

- · Auto Switch Proper Mounting Position (at Rotation End Detection)
- · Operating Angle and Hysteresis Angle
- · Operating Range and Hysteresis
- · How to Change the Auto Switch Detecting Position
- · Auto Switch Mounting
- · Auto Switch Adjustment

A flange mounting bracket assembly is available as an option. For details, refer to page 56.

Applicable Auto Switches / Refer to the Web Catalog for further information on auto switches.

Туре	Electrical entry	ndicator light	Wiring (Output)	Loa	d voltage [DC]	Auto switch model	Lead wire type		ad wire 1 (M)	length [3 (L)	m] 5 (Z)	Pre-wired connector	Applica	able load
Solid state	Grommet	Voc	3-wire (NPN) 3-wire (PNP)	24 V	5 V, 12 V	M9N M9P	Oilproof heavy-duty	•	•	•	0	0	IC circuit	Relay,
auto switch	Grommet	Grommet Ye		2-wire (PNP) 24 V 12 V	12 V	M9B	cord	•	•	•	0	0 -	PLC	

- Auto switches are shipped together with the product but do not come assembled.
- Auto switches marked with a "O" are produced upon receipt of order.

Specifications

Single vane

	Size	10	15	20	30	40			
		90°+5°	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						
Rotating	g angle range	180°+5°	180°+4°	180°±10°					
		270°+5°	270°+4°	270°+4°					
Fluid		Air (Non-lube)							
Proof p	ressure [MPa]		1.05		1	.5			
Ambient a	and fluid temperatures	5 to 60°C							
Max. ope	rating pressure [MPa]		0.7	1	.0				
Min. oper	ating pressure [MPa]	0.2							
Rotation tim	e adjustment range [s/90°]*1	0.03 to 0.5			0.04 to 0.5	0.07 to 0.5			
Allowabl	e kinetic energy [J]	0.00015	0.001	0.003	0.02	0.04			
Shaft load	Allowable radial load	15	15	25	30	60			
[N]	Allowable thrust load	10	10	20	25	40			
Port siz	Port size		180° specifications) ° specification)	M5 x 0.8					

^{*1} Operate within the specified rotation time range. Operation below 0.5 s/90° may cause stick slip or operation failure.

Double vane

Double											
	Size	10	15	20	30	40					
Pototine	g angle range	90°+5°	90°+5° 90°+4°								
notatili	g angle range	100°±2.5°	°±2.5° 100°±2°								
Fluid				Air (Non-lube)							
Proof pr	ressure [MPa]		1.05		1	.5					
Ambient a	and fluid temperatures	5 to 60°C									
Max. oper	rating pressure [MPa]	0.7									
Min. oper	ating pressure [MPa]	0.2									
Rotation tim	e adjustment range [s/90°]*2		0.05 to 0.5		0.1 to 0.5						
Allowabl	Allowable kinetic energy [J]		0.0012	0.0033	0.02	0.04					
Shaft load	Allowable radial load	15	15	25	30	60					
[N]	[N] Allowable thrust load		10	20	25	40					
Port size	е	M3 >	M3 x 0.5 M5 x 0.8								

^{*2} Operate within the specified rotation time range. Operation at a speed lower than 0.5 s may cause stick-slip or operation failure.

An operating pressure of at least 0.5 MPa is required to operate at the fastest rotation time. It is difficult to make adjustments during operation if the rotation time is changed to the low-speed range (0.5 s or lower).

Inner Volume

Single vane [cm³]

_	inigio vano															[0111]
	Size		10			15			20			30			40	
Ī	Rotating angle	90°	180°	270°	90°	180°	270°	90°	180°	270°	90°	180°	270°	90°	180°	270°
ſ	Inner Volume	0.8 (0.5)	1.1	1.5	2.1 (1.4)	2.8	3.8	5 (3.6)	6.5	7.9	13.3 (10.1)	17.4	19	30 (21.9)	37.5	41.6

^{*} Values inside () are inner volume of the supply side when A port is pressurized.

2.6

1.0

Double vane [cm3] 30 40 10 20 Rotating angle 90° 100° 90° 100° 90° 100° 90° 100° 90° 100°

2.7

5.5

5.6

Weight

Inner Volume

0.9

Single vane	Single vane														
Size		10			15			20			30			40	
Rotating angle	90°	180°	270°	90°	180°	270°	90°	180°	270°	90°	180°	270°	90°	180°	270°
Basic type (S shaft)	26 (27)	25 (26)	25 (26)	46 (47)	45 (46)	45 (46)	107 (110)	105 (107)	103 (106)	198 (203)	192 (197)	190 (195)	366 (378)	354 (360)	360 (366)
With auto switch	39	38	_	62	61	_	115	112	_	216	209	_	380	367	_

13.0

(): For W shaft

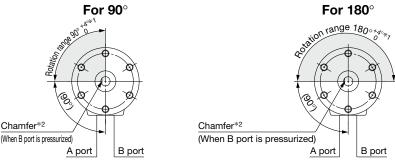
Double vane

Double vane	Jouble vane [g]										
Size	1	0	1	5	2	0	3	0	4	0	
Rotating angle	90°	100°	90°	100°	90°	100°	90°	100°	90°	100°	
Basic type (S shaft)	44 (43)	44 (43)	55 (54)	55 (54)	116 (114)	116 (114)	218 (214)	218 (214)	415 (409)	414 (408)	

(): For W shaft

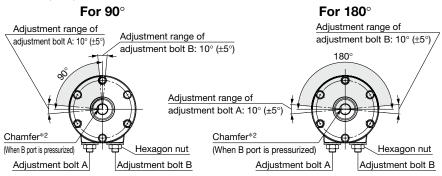
29.2

30.0


It is difficult to make adjustments during use if rotation time is changed to 0.5 s/90° or lower. Size 10 requires at least 0.35 MPa of operating pressure to reach the minimum rotation time ($0.03 \text{ s/90}^{\circ}$).

Vane Type Rotary Actuator CRB Series

Chamfered Portion and Rotation Range: Top View from Long Shaft Side (The positions of the chamfered portion shown below illustrate the conditions of actuators when B port is pressurized.)


• Operate within the adjustment range shown below.

Single vane Size: 10, 15

*1 For size 10, the tolerance of rotating angle of 90° and 180° will be $^{+5^{\circ}}_{0}$.

Size: 20, 30, 40

For 90° rotation: 80° to 100° adjustable

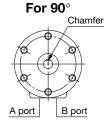
- For 180° rotation: 170° to 190° adjustable
 - of 270° will be $^{+5^{\circ}}_{0}$

Size: 10, 15, 20, 30, 40

For 270°

tion range 2700×4

- *2 For size 40 actuators, a parallel key will be used instead of a chamfer.
- * The angle adjusting screw (adjustment bolt) is set at random within the adjustable rotating range. Therefore, it must be readjusted to obtain the angle that suits your application. (Refer to page 62.)

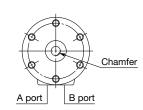

A Recommended tightening torque for hexagon nut to fix the adjustment bolt Size 20: 1.5 N·m Sizes 30, 40: 3 N·m

A port

Single vane

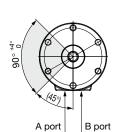
The position of the chamfered portion when A port is pressurized (when shipped from the factory)

Size: 10, 15, 20, 30, 40

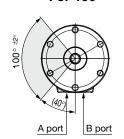

B port A port

Chamfer

(When B port is pressurized)

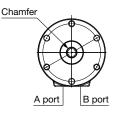

For 270°

*3 For size 10, the tolerance of rotating angle


B port

Double vane

For 90°

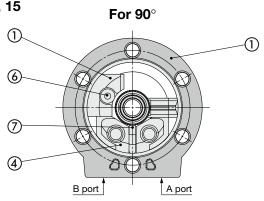

For 100°

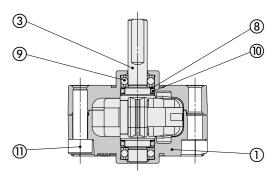
Double vane

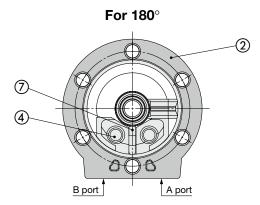
The position of the chamfered portion when A port is pressurized (when shipped from the factory)

Size: 10, 15, 20, 30, 40

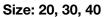

* For size 10, the rotating angle tolerance for 90° is $^{+5^{\circ}}_{0}$, and the tolerance for 100° is $\pm 2.5^{\circ}$.

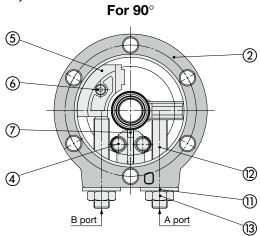

Refer to page 10 for details on the effective torque.

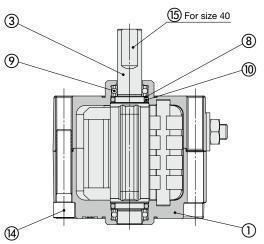


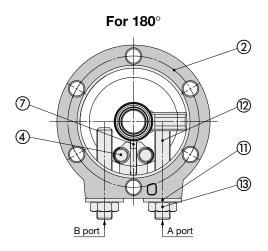

Construction: Single Vane Type Standard Type (Without Auto Switch)

• Following figures show actuators when B port is pressurized.

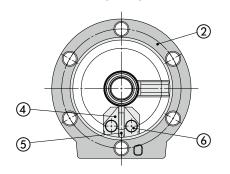


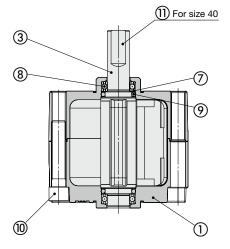





Component Parts

No.	Description	Material	Note
1	Body (A)	Aluminum alloy	Painted
2	Body (B)	Aluminum alloy	Painted
3	Vane shaft	Stainless steel	
4	Stopper	Resin	
5	Stopper for 90°	Resin	For 90°
6	Holding rubber	NBR	For 90°
7	Stopper seal	NBR	Special seal
8	Back-up ring	Stainless steel	
9	Bearing	Bearing steel	
10	O-ring	NBR	
11	Hexagon socket head cap screw	Chrome molybdenum steel	Special screw

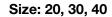

Description	Material	Note
Body (A)	Aluminum alloy	Painted
Body (B)	Aluminum alloy	Painted
Vane shaft	Stainless steel*1	
Stopper	Resin	
Stopper for 90°	Resin	For 90°
Holding rubber	NBR	For 90°
Stopper seal	NBR	Special seal
Back-up ring	Stainless steel	
Bearing	Bearing steel	
O-ring	NBR	
Seal washer	NBR	
Adjustment bolt	Chrome molybdenum steel	
Hexagon nut	Steel wire	
Hexagon socket head cap screw	Chrome molybdenum steel	Special screw
Parallel key	Carbon steel	Size 40 only
	Body (A) Body (B) Vane shaft Stopper Stopper for 90° Holding rubber Stopper seal Back-up ring Bearing O-ring Seal washer Adjustment bolt Hexagon nut	Body (A) Body (B) Aluminum alloy Vane shaft Stopper Resin Stopper for 90° Resin Holding rubber NBR Stopper seal Back-up ring Bearing Bearing O-ring NBR Seal washer Adjustment bolt Hexagon nut Rluminum alloy Aluminum alloy Aluminum alloy Aluminum alloy Aluminum alloy Aluminum alloy Resin Resin Stainless steel* Bearing Bearing steel O-ring NBR Adjustment bolt Chrome molybdenum steel Chrome molybdenum steel

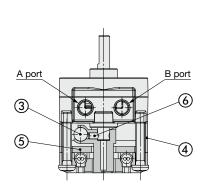

^{*1} The material is chrome molybdenum steel for sizes 30 and 40.

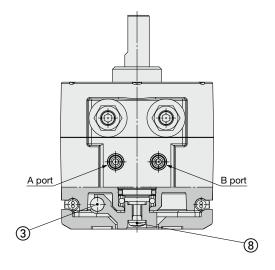
Construction: Single Vane Type Standard Type (Without Auto Switch)

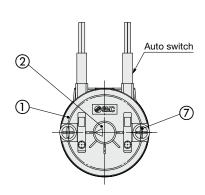
• Following figures show the position of the ports during rotation.

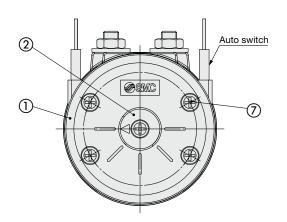
Size: 10, 15, 20, 30, 40 For 270°

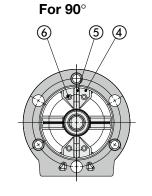

No.	Description	Material	Note
1	Body (A)	Aluminum alloy	Painted
2	Body (B)	Aluminum alloy	Painted
3	Vane shaft	Stainless steel*1	
4	Stopper	Resin	
5	Stopper seal	NBR	Special seal
6	Stopper pin	Bearing steel	
7	Back-up ring	Stainless steel	
8	Bearing	Bearing steel	
9	O-ring	NBR	
10	Hexagon socket head cap screw	Chrome molybdenum steel	Special screw
11	Parallel key	Carbon steel	Size 40 only

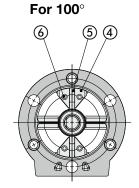

 $[\]ast 1$ The material is chrome molybdenum steel for sizes 30 and 40.


Construction: Single Vane Type Standard Type (With Auto Switch)


• Following figures show actuators when B port is pressurized.

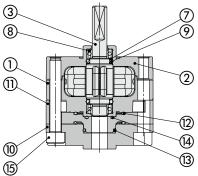

Size: 10, 15

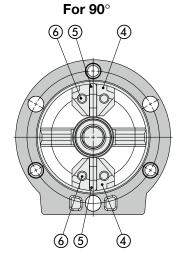

No.	Description	Material
1	Cover	Resin
2	Magnet holder	Resin
3	Magnet	Magnetic material
4	Body C	Resin
5	Switch plate	Aluminum alloy
6	Spring pin	Stainless steel
7	Cross recessed round head screw	Chrome molybdenum steel*1
8	Cross recessed round head screw	Chrome molybdenum steel

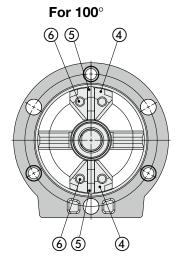

^{*1} The material is stainless steel for sizes 10 and 15.

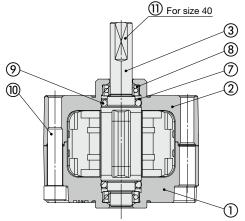
Construction: Double Vane Type Standard Type

• Figures below show the intermediate rotation position when A or B port is pressurized.

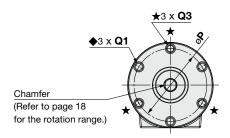

Size: 10



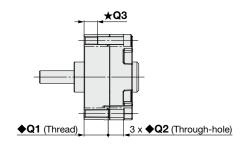

Component Parts (Size: 10)

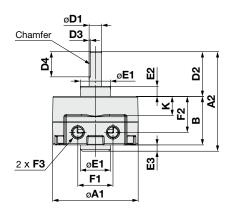

	· · · · · · · · · · · · · · · · · · ·		
No.	Description	Material	Note
1	Body (A)	Aluminum alloy	Painted
2	Body (B)	Aluminum alloy	Painted
3	Vane shaft	Chrome molybdenum steel	
4	Stopper	Resin	For 90°
4	Stopper	Resin	For 100°
5	Stopper seal	NBR	Special seal
6	Stopper pin	Bearing steel	
7	Back-up ring	Stainless steel	
8	Bearing	Bearing steel	
9	O-ring	NBR	
10	Cover (D)	Aluminum alloy	
11	Plate	Resin	
12	Gasket	NBR	
13	O-ring	NBR	
14	O-ring	NBR	
15	Hexagon socket head cap screw	Chrome molybdenum steel	Special screw

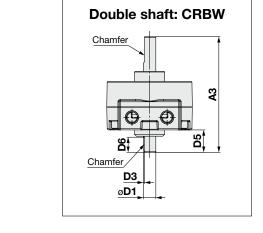
Size: 15, 20, 30, 40

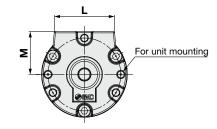

Component Parts (Size: 15 to 40)

No.	Description	Material	Note
1	Body (A)	Aluminum alloy	Painted
2	Body (B)	Aluminum alloy	Painted
3	Vane shaft	Chrome molybdenum steel	
4	Stopper	Resin	For 90°
-	Stopper	Resin	For 100°
5	Stopper seal	NBR	Special seal
6	Stopper pin	Bearing steel	
7	Back-up ring	Stainless steel	
8	Bearing	Bearing steel	
9	O-ring	NBR	
10	Hexagon socket head cap screw	Chrome molybdenum steel	Special screw
11	Parallel key	Carbon steel	Size 40 only


Dimensions: Single Vane Type Standard Type (Without Auto Switch) 10, 15

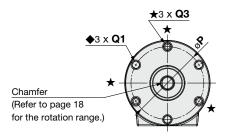

Single shaft: CRBS (For 90° and 180°)

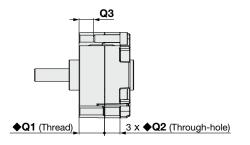

• Following figures show actuators when B port is pressurized.

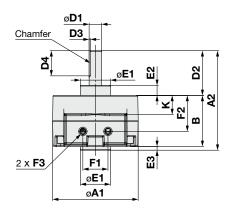


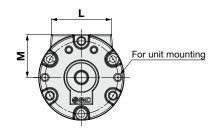
(3 mounting holes with the ★ marks are for tightening the actuator and not to be used for external mounting for size 10.

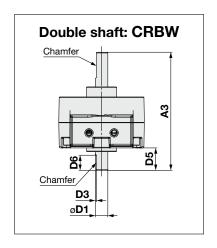
																	[mm]
Sizo	Size A			В			D					Ε			F		l v
Size	A1	A2	A 3	В	D1 (g7)	D2	D3	D4	D5	D6	E1 (h9)	E2	E 3	F1	F2	F3	7 r
10	29	30	37	15	4 ^{-0.004} -0.015	14	0.5	9	8	5	9_0.036	3	1	12	9.8	M5 x 0.8	3.6
15	34	39.5	47	20	5 ^{-0.004} 5 _{-0.016}	18	0.5	10	9	6	12_0.043	4	1.5	14	14.3	M5 x 0.8	7.6


Q Size М Ρ **♦**Q1 **♦**Q2 **★Q**3 14.6 19.8 10 M3 x 0.5 depth 6 15 24 17.1 M3 x 0.5 depth 10 6 M3 x 0.5 depth 5


Dimensions: Single Vane Type Standard Type (Without Auto Switch) 10, 15


Single shaft: CRBS (For 270°)

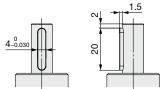

• Following figures show the position of the ports during rotation.



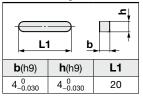
3 mounting holes with the ★ marks are for tightening the actuator and not to be used for external mounting for size 10.

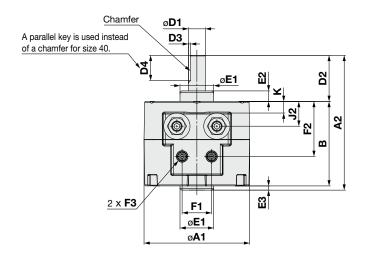
																	[mm]
Size		Α		ь			D					E			F		l v
Size	A1	A2	A3		D1 (g7)	D2	D3	D4	D5	D6	E1 (h9)	E2	E 3	F1	F2	F3	
10	29	30	37	15	4 ^{-0.004} -0.015	14	0.5	9	8	5	9_0.036	3	1	9.5	9.8	M3 x 0.5	3.6
15	34	39.5	47	20	5 ^{-0.005} _{-0.016}	18	0.5	10	9	6	12_0.043	4	1.5	10	14.3	M3 x 0.5	7.6

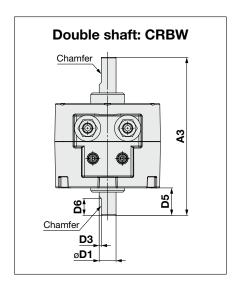
Size		М	Ъ		Q	
Size	-	IVI	P	♦ Q1	♦ Q2	★Q 3
10	19.8	14.6	24	M3 x 0.5 depth 6	6	_
15	24	17.1	29	M3 x 0.5 depth 10	6	M3 x 0.5 depth 5

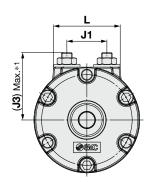

Dimensions: Single Vane Type Standard Type (Without Auto Switch) 20, 30, 40

Single shaft: CRBS (For 90° and 180°)


• Following figures show actuators when B port is pressurized.


Chamfer (Refer to page 18 for the rotation range.) ◆Q1 (Thread) 3 x ◆Q2 (Through-hole)

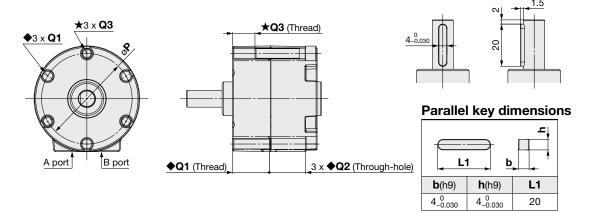

For size 40

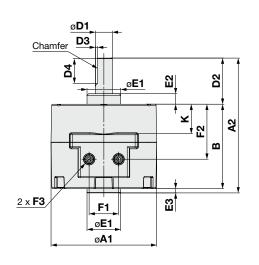


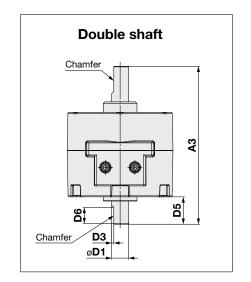
Parallel key dimensions

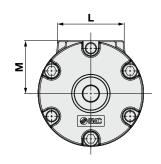
																[mm]
Size		Α		В			D					E			F	
Size	A1	A2	A3	P	D1 (g7)	D2	D3	D4	D5	D6	E1 (h9)	E2	E3	F1	F2	F3
20	42	50.5	59	29	6 ^{-0.004} -0.016	20	0.5	10	10	7	14_0.043	4.5	1.5	13	18.3	M5 x 0.8
30	50	64	75	40	8 ^{-0.005} -0.020	22	1	12	13	8	16_0.043	5	2	14	26	M5 x 0.8
40	63	79.5	90	45	10 ^{-0.005}	30	1	_	15	9	25_0.052	6.5	4.5	20	31.1	M5 x 0.8

Size		J		V		D	Q							
Size	J1	J2	J3	, n		P	♦ Q1	♦ Q2	★Q 3					
20	16	7.1	27.4	_	28	36	M4 x 0.7 depth 10	11	M4 x 0.7 depth 7.5					
30	19	11.8	32.7	5.5	31.5	43	M5 x 0.8 depth 15	16.5	M5 x 0.8 depth 10					
40	28	15.8	44.1	9.5	40	56	M5 x 0.8 depth 20	17.5	M5 x 0.8 depth 10					


^{*1} J3-dimension is not the dimension at the time of shipment, since its dimension is for adjustment parts.

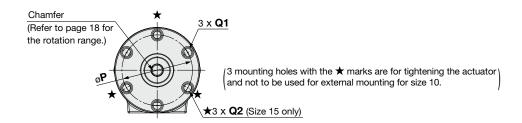

For size 40

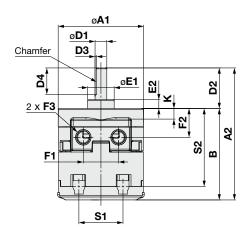

Dimensions: Single Vane Type Standard Type (Without Auto Switch) 20, 30, 40

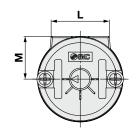

Single shaft: CRBS (For 270°)

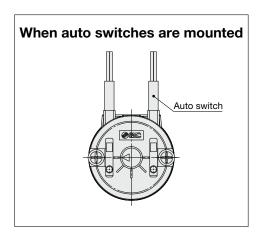
• Following figures show the position of the ports during rotation.

																[mm]
Ciro		Α		В			D					E			F	
Size	A1	A2	A3	P	D1 (g7)	D2	D3	D4	D5	D6	E1 (h9)	E2	E 3	F1	F2	F3
20	42	50.5	59	29	6 ^{-0.004} -0.016	20	0.5	10	10	7	14_0.043	4.5	1.5	13	18.3	M5 x 0.8
30	50	64	75	40	8 ^{-0.005} -0.020	22	1	12	13	8	16_0.043	5	2	14	26	M5 x 0.8
40	63	79.5	90	45	$10^{-0.005}_{-0.020}$	30	1	_	15	9	25_0_0	6.5	4.5	20	31.1	M5 x 0.8


Size	K	- 1	м	ь		Q	
Size	, r	_	IVI	-	♦ Q1	♦ Q2	★Q 3
20	10.5	28	21	36	M4 x 0.7 depth 10	11	M4 x 0.7 depth 7.5
30	14	31.5	25	43	M5 x 0.8 depth 15	16.5	M5 x 0.8 depth 10
40	17	40	31.6	56	M5 x 0.8 depth 20	17.5	M5 x 0.8 depth 10




Dimensions: Single Vane Type Standard Type (With Auto Switch) 10, 15


Single shaft: CDRBS (For 90° and 180°)

• Following figures show actuators when B port is pressurized.

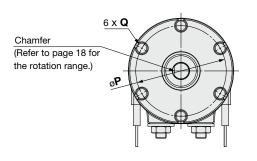
															[mm]	
	Α	В		D			E			F	F			N/A	D	
A1	A2	В	D1 (g7)	D2	D3	D4	E1 (h9)	E2	F1	F2	F3	, r	_	М	P	
29	46	32	4 ^{-0.004} -0.015	14	0.5	9	9_0.036	3	12	9.8	M5 x 0.8	3.6	19.8	14.6	24	
34	54.8	36.8	5-0.004	18	0.5	10	12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4	14	14.3	M5 x 0.8	7.6	24	17.1	29	

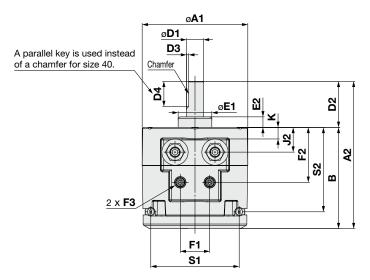
 Size
 Q
 S

 ◆Q1
 ★Q2
 S1
 S2

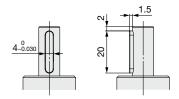
 10
 M3 x 0.5 depth 6
 —
 15
 27

 15
 M3 x 0.5 depth 10
 M3 x 0.5 depth 5
 19
 32.2

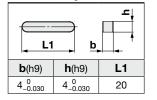


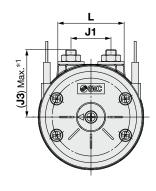

10 15

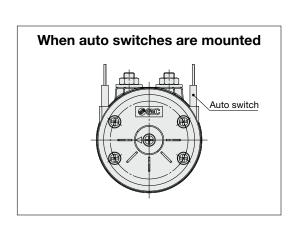
Dimensions: Single Vane Type Standard Type (With Auto Switch) 20, 30, 40


Single shaft: CDRBS (For 90° and 180°)

• Following figures show actuators when B port is pressurized.



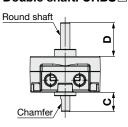



For size 40

Parallel key dimensions

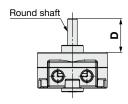
																[mm]
Ciro	Size A		В		D			E			F			J		V
Size	A1	A2	В	D1 (g7)	D2	D3	D4	E1 (h9)	E2	F1	F2	F3	J1	J2	J3	
20	42	55.6	35.6	6 ^{-0.004} -0.016	20	0.5	10	14_0.043	4.5	13	18.3	M5 x 0.8	16	7.1	27.4	_
30	50	70	48	8 ^{-0.005} -0.020	22	1	12	16_0.043	5	14	26	M5 x 0.8	19	11.8	32.7	5.5
40	63	84.2	54.2	10-0.005	30	_	_	25_0 052	6.5	20	31.1	M5 x 0.8	28	15.8	44.1	9.5

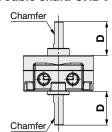
Size		Р	Q		S
Size		P	ų į	S1	S2
20	28	36	M4 x 0.7 depth 10	37	28.6
30	31.5	43	M5 x 0.8 depth 15	42	40.1
40	40	56	M5 x 0.8 depth 20	52	45.2


^{*1} J3-dimension is not the dimension at the time of shipment, since its dimension is for adjustment parts.

Shaft Type Dimensions (Dimensions other than specified below are the same as those of the standard type.)

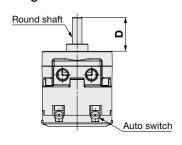
Size: 10, 15 Standard type


Double shaft: CRB**J**□


Double shaft: CRBK

Round shaft

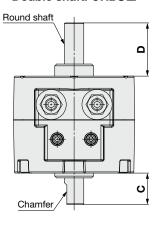
Single shaft: CRB**T**□



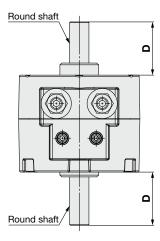
Double shaft: CRB**Y**□

With auto switch

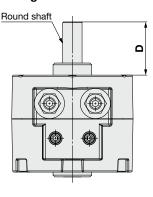
Single shaft: CDRB**T**□

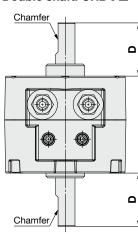


		[mm]
Size	10	15
С	8	9
D	14	18

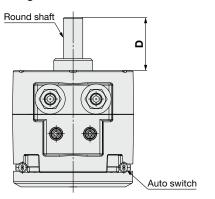

* The dimensions of the shaft and chamfer are the same as those of the standard type. Dimensions of parts different from the standard type conform to the general tolerance.

Size: 20, 30, 40 Standard type


Double shaft: CRB $oldsymbol{\mathsf{J}}\Box$


Double shaft: CRB $K\square$

Single shaft: CRB**T**□

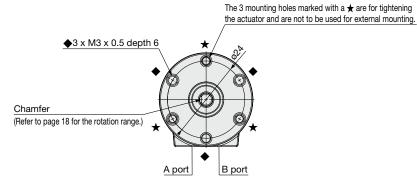


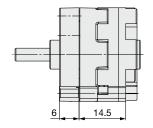
Double shaft: CRB**Y**□

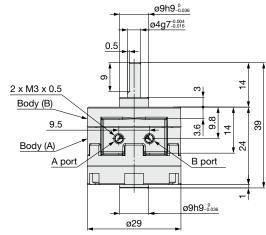
With auto switch

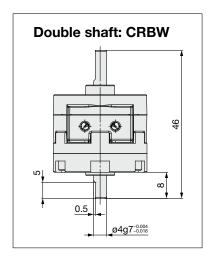
Single shaft: CDRB**T**□

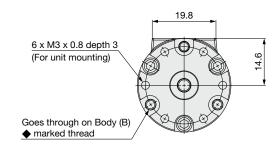
A parallel key is used instead of a chamfer for size 40.

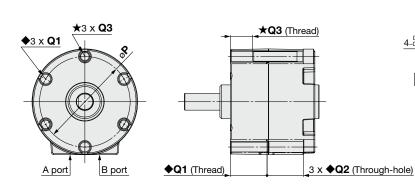

			[mm]
Size	20	30	40
С	10	13	15
D	20	22	30

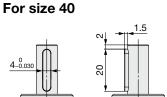

The dimensions of the shaft and chamfer (a parallel key for size 40) are the same as those of the standard type. Dimensions of parts different from the standard type conform to the general tolerance.



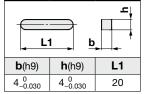

Dimensions: Double Vane Type Standard Type (Without Auto Switch) 10


Single shaft: CRBS10-□D (For 90° and 100°)

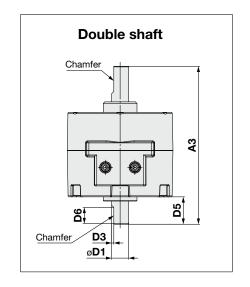


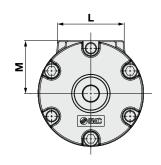


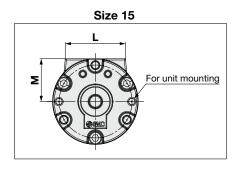
Dimensions: Double Vane Type Standard Type (Without Auto Switch) 15, 20, 30, 40


Single shaft: CRBS-□D (For 90° and 100°)


• Following figures show the position of the ports during rotation.



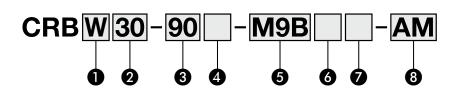



Parallel key dimensions

[mm]

Size	Α			В	D								F			
	A1	A2	А3	В	D1 (g7)	D2	D3	D4	D5	D6	E1 (h9)	E2	E3	F1	F2	F3
15	34	39.5	47	20	5 ^{-0.004}	18	0.5	10	9	6	12_0.043	4	1.5	10	14.3	M3 x 0.5
20	42	50.5	59	29	6 ^{-0.004}	20	0.5	10	10	7	14_0.043	4.5	1.5	13	18.3	M5 x 0.8
30	50	64	75	40	8 ^{-0.005} -0.020	22	1	12	13	8	16_0.043	5	2	14	26	M5 x 0.8
40	63	79.5	90	45	10 ^{-0.005} -0.020	30	1	_	15	9	25_0.052	6.5	4.5	20	31.1	M5 x 0.8

Size	к		м	Р		Q				
Size	Size K		IVI	_ F	♦ Q1	♦ Q2	♦ Q3			
15	7.6	24	17.1	29	M3 x 0.5 depth 10	6	M3 x 0.5 depth 5			
20	10.5	28	21	36	M4 x 0.7 depth 10	11	M4 x 0.7 depth 7.5			
30	14	31.5	25	43	M5 x 0.8 depth 15	16.5	M5 x 0.8 depth 10			
40	17	40	31.6	56	M5 x 0.8 depth 20	17.5	M5 x 0.8 depth 10			


Vane Type Rotary Actuator With Vertical Auto Switch Unit

4 Series

Size: 10, 15, 20, 30, 40

How to Order

5 Auto switch

to the table below.

Shaft type

Symbol	Chaff tuna	Shaft-end shape							
	Shart type	Long shaft	Short shaft						
W	Double shaft	Single flat*1	Single flat*3						
J*2	Double shaft	Round shaft	Single flat*3						

- *1 Size 40 has a parallel key instead of a chamfered portion.
- *2 Option "J" is produced upon receipt of order.
- *3 A vertical auto switch unit can be mounted to the short shaft side.

Size

10
15
20
30
40

3 Rotating angle

0: 1	90	90°		
Single vane	180	180°		
varie	270	270°		
Double	90	90°		
vane	100	100°		

6 Lead wire length

Nil	Grommet/Lead wire: 0.5 m
M	Grommet/Lead wire: 1 m
L	Grommet/Lead wire: 3 m
CN	Connector/Without lead wire
С	Connector/Lead wire: 0.5 m
CL	Connector/Lead wire: 3 m
Z *1	Grommet/Lead wire: 5 m

- *1 The 5 m lead wire is produced upon receipt of order.
- Connectors are only available for the R73, R80, and T79.
- Lead wire with connector part nos. D-LC05: Lead wire 0.5 m

D-LC30: Lead wire 3 m D-LC50: Lead wire 5 m

Long shaft

Short shaft

Double vane

4 Vane type

7 Nu	mber of auto switch	es
Nil	2	
S	1	

Single vane

8 Auto switch unit

For applicable auto switches, refer

Symbol	Description	Applicable auto switch
A	With vertical auto switch unit (Built-in magnet)	Other than the D-M9□(V) → Refer to pages 60 and 61.
АМ	With vertical auto switch unit for the D-M9 (Built-in magnet)	D-M9□(V) → Refer to page 59.

^{*} Refer to page 57 if the auto switch unit is needed separately.

Applicable Auto Switches / Refer to the Web Catalog for further information on auto switches.

APP	Applicable Auto Cwitches/ herer to the web catalog for further information on auto switches.																						
Appli-		Special	Electrical	Indicator light	Wiring		Load vo	oltago	Auto swit	ch model	Lead wire	Le	ad w	ire ler	ngth [m]	Pre-wired	Appli	aabla				
cable	cable Type function entry		ator			Loau vo	niage	Auto Swit	CITITIOUEI		0.5	1	3	5	None	connector		Applicable load					
size		IUIICUOII	entry	lgi	(Output)		DC	AC	Perpendicular	In-line	type	(Nil)	(M)	(L)	(Z)	(N)	COLLIGECTOL	ioau					
					3-wire (NPN)		5 V,		M9NV	M9N		•	•	•	0	_	0	IC					
	Solid				3-wire (PNP)	1	12 V		M9PV	M9P	Oilproof	•	•	•	0	_	0	circuit					
	For 10, 15 Reed Grown		Yes	2-wire		12 V		M9BV	M9B	heavy-duty	•	•	•	0	_	0	_						
Ear			165	3-wire (NPN)]	5 V,	_	S99V	S99	cord	•	_	•	0	_	0	IC						
_		Grommet	Grommot	Grommot	Grommet	Grommet		3-wire (PNP)	24 V	12 V		S9PV	S9P	Colu	•	_		0	_	0	circuit	Relay,	
				2-wire] v	12 V		T99V	T99			_		0	_	0	_	PLC					
13		,		No			5 V, 12 V	5 V, 12 V, 24 V	_	90	Vinyl parallel cord	•	_	•	•	_		IC					
	auto	_		INO	2-wire		5 V, 12 V, 100 V 5 V, 12 V, 24 V, 100 V		ı	90A	Oilproof heavy-duty cord	•	_		•	_	_ '	circuit					
	switch			Yes	I		_		_	97	Vinyl parallel cord Oilproof heavy-duty cord	•		•	•	_		_					
	SWILOII			100				100 V	_			•	_	•	•	_							
					3-wire (NPN)		5 V,		M9NV	M9N		•	•	•	0	_	0	IC					
	Solid				3-wire (PNP)		12 V		M9PV	M9P		•	•	•	0	_	0	○ circuit					
	state		Grommet		2-wire		12 V		M9BV	M9B		•	•	•	0	_	0	_					
For	auto	-	arominot	Yes	3-wire (NPN)		5 V,	_	_	S79		•		•	0	_	0	IC					
20,	switch				3-wire (PNP)		12 V		-	S7P	Oilproof	•	_	•	0	_	0	circuit	Relay,				
30,					2-wire	24 V	12 V		_	T79	heavy-duty	•	_	•	0	_	0		PLC				
40			Connector		2 WIIC		12 4		_	T79C	cord	•	_	•	•	•	_						
40	Reed		Grommet				_	100 V	_	R73			_	•	0	_		_					
	auto	l _	Connector	.00	2-wire	2-wire		_		R73C	_	•		•	•	•	_						
	switch		Grommet	No			48 V, 100 V		_	R80		•	_	•	0	_		IC circuit					
	21176611		Connector	0			_	24 V or less	_	R80C			_					_					

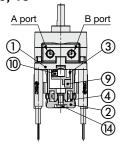
- Auto switches are shipped together with the product but do not come assembled.
- Auto switches marked with a "O" are produced upon receipt of order.

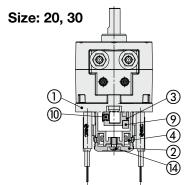
CRB □-A Series

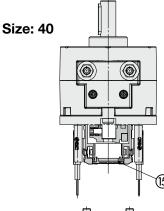
The specifications, inner volume, and rotation range are the same as those of the standard type. (→pp. 17, 18)

Weight

																									[g]
Vane type		Single vane type											Double vane type												
Size	10			15		20			30		40		10		15		20		30		40				
Rotating angle	90°	180°	270°	90°	180°	270°	90°	180°	270°	90°	180°	270°	90°	180°	270°	90°	100°	90°	100°	90°	100°	90°	100°	90°	100°
Basic type	27	26	26	47	46	46	110	107	106	203	197	195	378	360	366	43	43	55	55	116	116	218	218	415	414
Vertical auto switch unit		15			20			28			38			43		1	5	2	.0	2	8	3	8	4	13

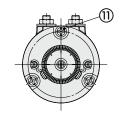

A flange mounting bracket assembly is available as an option. For details, refer to page 56.

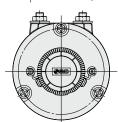

Construction: With Vertical Auto Switch Unit

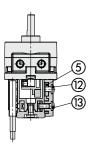

• Components other than those specified below are the same as those of the standard type.

D-M9□

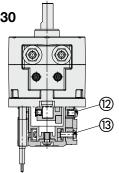
Size: 10, 15

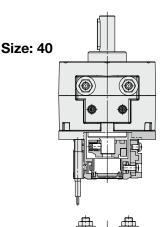




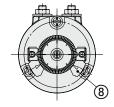


D-S/T99(V) D-S9P(V)


D-S7P D-90/90A D-97/93A D-R73/80□


D-S/T79□

Size: 10, 15



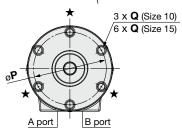
Con	iponent Parts				
No.	Description	Material			
13	Cross recessed round head screw	Stainless steel			
14	Cross recessed round head screw	Stainless steel			
15	Rubber cap	NBR			
16	Switch holder	Stainless steel			

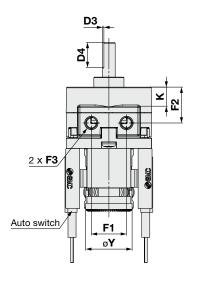
No.	Description	Material
1	Cover (A)	Resin
2	Cover (B)	Resin
3	Magnet lever	Resin
4	Holding block	Stainless steel
5	Holding block (B)	Aluminum alloy
6	Switch block (A)	Resin

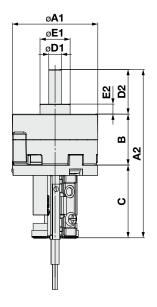
Con	ponent Parts
No.	Description

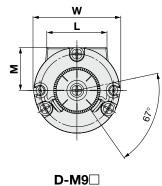
No.	Description	Material
7	Switch block (B)	Resin
8	Switch block	Resin
9	Magnet	
10	Hexagon socket set screw	Stainless steel
11	Cross recessed round head screw	Stainless steel
12	Cross recessed round head screw	Stainless steel

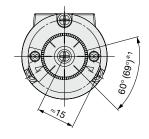
^{*} For size 10, there are 2 pcs. of ① cross recessed round head screws.


Vane Type Rotary Actuator With Vertical Auto Switch Unit CRB —- A Series


Dimensions: Single Vane Type With Vertical Auto Switch Unit (10, 15)


CRBW-A (For 90° and 180°)


• Following figures show actuators when B port is pressurized.


(3 mounting holes with the ★ marks are for tightening the actuator and not to be used for external mounting for size 10.

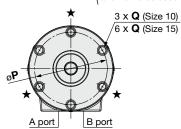
D-S/T99(V), S9P(V), D-97/93A, 90/90A

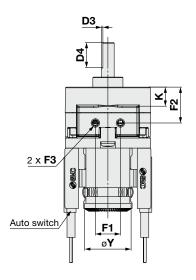
The angle is 60° when any of the following are used: D-90/904/97/934

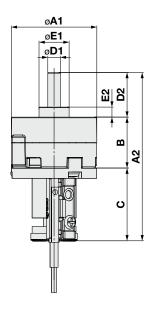
٠.	The angle is 60	when any or the	nollowing are use	a. D-90/90A/91/93A
	The angle is 69°	when any of the	following are use	ed: D-S99(V)/T99(V)/S9P(V)

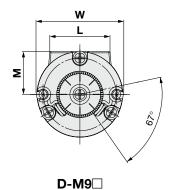
																	[mm]
Size	Α		В		D				E			F				М	В
Size	A 1	A2	ь	O	D1 (g7)	D2	D3	D4	E1 (h9)	E2	F1	F2	F3	K	_ -	IVI	
10	29	58	15	29	4 ^{-0.004} -0.015	14	0.5	9	9_0.036	3	12	9.8	M5 x 0.8	3.6	19.8	14.6	24
15	34	67	20	29	5 ^{-0.004} -0.016	18	0.5	10	12_0.043	4	14	14.3	M5 x 0.8	7.6	24	17.1	29

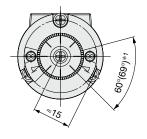
Size	Q	w	Y		
10	M3 x 0.5 depth 6	35	18.5		
15	M3 x 0.5 depth 5	35	18.5		


CRB □-A Series


Dimensions: Single Vane Type With Vertical Auto Switch Unit (10, 15)


CRBW-A (For 270°)

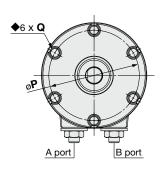

• Following figures show the position of the ports during rotation.

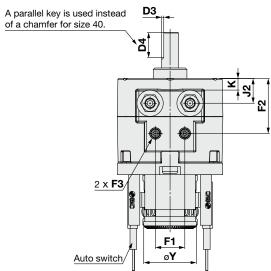

3 mounting holes with the ★ marks are for tightening the actuator and not to be used for external mounting for size 10.

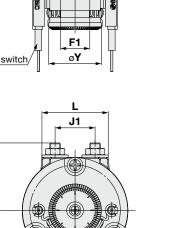
D-S/T99(V), S9P(V), D-97/93A, 90/90A

*1 The angle is 60° when any of the following are used: D-90/90A/97/93A The angle is 69° when any of the following are used: D-S99(V)/T99(V)/S9P(V)

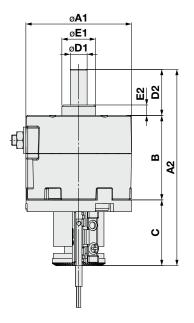
																	[mmj
Size	Α		В			D			E			F				м	В
Size	A1	A2	В		D1 (g7)	D2	D3	D4	E1 (h9)	E2	F1	F2	F3	N.		IVI	F
10	29	58	15	29	4 ^{-0.004} -0.015	14	0.5	9	9_0.036	3	9.5	9.8	M3 x 0.5	3.6	19.8	14.6	24
15	34	67	20	29	5 ^{-0.004} 5 _{-0.016}	18	0.5	10	12_0,043	4	10	14.3	M3 x 0.5	7.6	24	17.1	29

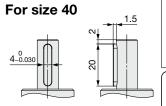

Size	Q	w	Υ
10	M3 x 0.5 depth 6	35	18.5
15	M3 x 0.5 depth 5	35	18.5




Dimensions: Single Vane Type With Vertical Auto Switch Unit (20, 30, 40)

CRBW-A (For 90° and 180°)


• Following figures show actuators when B port is pressurized.



D-M9□

D-S/T79□, S7P, R73/80□

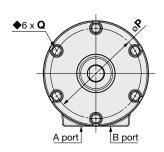
Parallel key dimensions

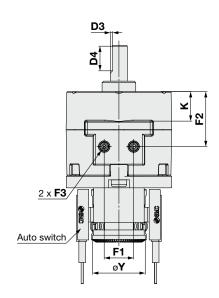
unnens	1111011310113							
L.	<u>b</u>	=						
b (h9)	h (h9)	L1						
4_0.030	4_0.030	20						

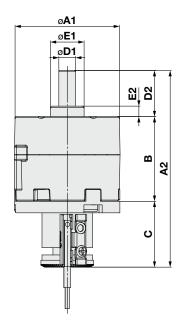
																	Įmmj
Size	Α		В	_		D			E			F			J		V
Size	A1	A2	В	C	D1 (g7)	D2	D3	D4	E1 (h9)	E2	F1	F2	F3	J1	J2	J3	
20	42	79	29	30	6 ^{-0.004} -0.016	20	0.5	10	14_0.043	4.5	13	18.3	M5 x 0.8	16	7.1	27.4	_
30	50	93	40	31	8 ^{-0.005} -0.020	22	1	12	16_0.043	5	14	26	M5 x 0.8	19	11.8	32.7	5.5
40	63	106	45	31	10-0.005	30	_	_	25_0.052	6.5	20	31.1	M5 x 0.8	28	15.8	44.1	9.5

Size	L	Р	Q	w	Y
20	28	36	M4 x 0.7 depth 7	19.5	25
30	31.5	43	M5 x 0.8 depth 10	19.5	25
40	40	56	M5 x 0.8 depth 10	22.5	31

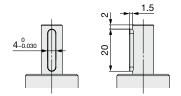
(**J3**) Max.

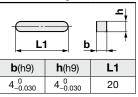


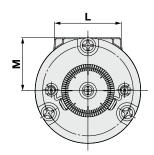

CRB □-**A** Series

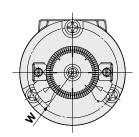

Dimensions: Single Vane Type With Vertical Auto Switch Unit (20, 30, 40)

CRBW-A (For 270°)


• Following figures show the position of the ports during rotation.





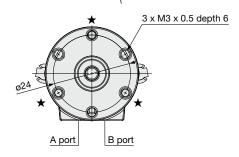

For size 40

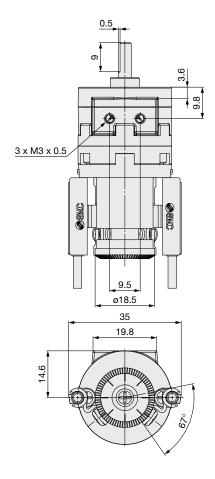
Parallel key dimensions

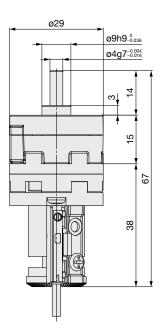
|--|

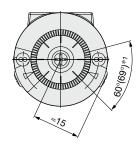
Size	-	4	В	_	D		E		F				
Size	A1	A2	В		D1 (g7)	D2	D3	D4	E1 (h9)	E2	F1	F2	F3
20	42	79	29	30	6 ^{-0.004} -0.016	20	0.5	10	14_0.043	4.5	13	18.3	M5 x 0.8
30	50	93	40	31	8 ^{-0.005} -0.020	22	1	12	16_0.043	5	14	26	M5 x 0.8
40	63	106	45	31	10 ^{-0.005} -0.020	30	_	_	25_0.052	6.5	20	31.1	M5 x 0.8

Size	К	L	М	Р	Q	W	Y
20	10.5	28	21	36	M4 x 0.7 depth 7	19.5	25
30	14	31.5	25	43	M5 x 0.8 depth 10	19.5	25
40	17	40	31.6	56	M5 x 0.8 depth 10	22.5	31


Vane Type Rotary Actuator With Vertical Auto Switch Unit CRB —- A Series

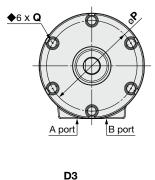

Dimensions: Double Vane Type With Vertical Auto Switch Unit 10

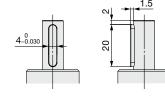

CRBW10-□D-A (For 90° and 100°)


• The following figures show the position of the ports during rotation when the A or B port is pressurized.

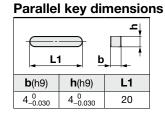
The 3 mounting holes marked with a * are for tightening the actuator \ and are not to be used for external mounting.

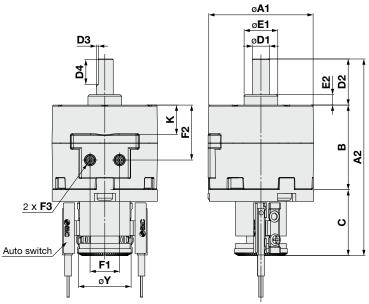
D-S/T99(V), S9P(V), D-97/93A, 90/90A

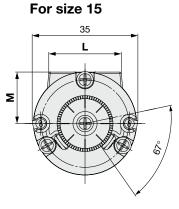

^{*1} The angle is 60° when any of the following are used: D-90/90A/97/93A The angle is 69° when any of the following are used: D-S99(V)/T99(V)/S9P(V)

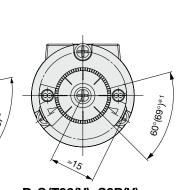

CRB □-A Series

Dimensions: Double Vane Type With Vertical Auto Switch Unit (15, 20, 30, 40)


CRBW-□D-A (For 90° and 100°)


• The following figures show the position of the ports during rotation when the A or B port is pressurized.


For size 40



D-M9□

D-S/T79□, S7P, D-R73/80□

D-M9□

D-S/T99(V), S9P(V), D-97/93A, 90/90A

*1 The angle is 60° when any of the following are used: D-90/90A/97/93A The angle is 69° when any of the following are used: D-S99(V)/T99(V)/S9P(V)

													[mm]
Size	Α		В	С		D			E			F	
Size	A1	A2	В		D1 (g7)	D2	D3	D4	E1 (h9)	E2	F1	F2	F3
15	34	67	20	29	5 ^{-0.004} -0.016	18	0.5	10	12_0.043	4	10	14.3	M3 x 0.5
20	42	79	29	30	6 ^{-0.004} -0.016	20	0.5	10	14_0.043	4.5	13	18.3	M5 x 0.8
30	50	93	40	31	8 ^{-0.005} -0.020	22	1	12	16_0.043	5	14	26	M5 x 0.8
40	63	106	45	31	10 ^{-0.005} -0.020	30	_	_	25_0.052	6.5	20	31.1	M5 x 0.8

Size	K	L	М	Р	Q	W	Y
15	7.6	24	17.1	29	M3 x 0.5 depth 5	_	18.5
20	10.5	28	21	36	M4 x 0.7 depth 7	19.5	25
30	14	31.5	25	43	M5 x 0.8 depth 10	19.5	25
40	17	40	31.6	56	M5 x 0.8 depth 10	22.5	31

Vane Type Rotary Actuator With Angle Adjustment Unit/With Vertical Auto Switch Unit and Angle Adjustment Unit

|-B/CRB| C Series

Size: 10, 15, 20, 30, 40

RoHS

How to Order

Shaft type

Long shaft

(1)

Cumbal	Shaft type	Shaft-end shape						
Symbol		Long shaft	Short shaft					
W	Double shaft	Single flat*1	Single flat*3					
J *2	Double shaft	Round shaft	Single flat*3					

- *1 Size 40 has a parallel key instead of a chamfered portion.
- *2 Option "J" is produced upon receipt of order.
- *3 An angle adjustment unit can be mounted to the short shaft side.

4 Vane type

Nil

2 Siz	е
10	
15	

20

30

40

ze	notat	Jie		
	0: 1	90	90°	
	Single vane	180	180°	
		270	270°	
	Double	90	90°	
_	vane	100	100°	

5 Auto switch

to the table below.

For applicable auto switches, refer

6 Lead wire length

Nil	Grommet/Lead wire: 0.5 m			
M	Grommet/Lead wire: 1 m			
L	Grommet/Lead wire: 3 m			
CN	CN Connector/Without lead wire			
С	C Connector/Lead wire: 0.5 m			
CL	Connector/Lead wire: 3 m			
Z *1	Grommet/Lead wire: 5 m			

- st 1 The 5 m lead wire is produced upon receipt of order.
- * Connectors are only available for the R73, R80, and T79.
- Lead wire with connector part nos.

D-LC05: Lead wire 0.5 m D-LC30: Lead wire 3 m D-LC50: Lead wire 5 m

8 With vertical auto switch unit and angle adjustment unit

Number of auto switches Nil

Single vane

Double vane

Symbo	Description	Applicable auto switch
С	With vertical auto switch unit and angle adjustment unit (Built-in magnet)	Other than the D-M9□(V) → Refer to pages 60 and 61.
СМ	With vertical auto switch unit for the D-M9 and angle adjustment unit (Built-in magnet)	D-M9□(V) → Refer to page 59.

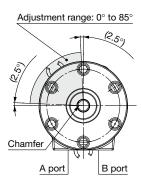
Refer to page 57 if either unit is needed separately.

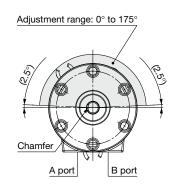
Applicable Auto Switches / Refer to the Web Catalog for further information on auto switches.

APP	iioabi	c_{Λ}	ato OW		,, i C G /	1 1010	i to the we	eb Catalog I	Ji lui lilei	moman	on auto si	VILCITE	55.							_
Appli-		Special	Electrical	Indicator light	Wiring		Load vo	oltage	Auto swit	ch model	Lead wire	Le	ad w	ire ler	ngth [m]	Pre-wired	Applie	ooblo	
cable	Type	function	entry	ator	_		Loau vo	niage	Auto Swit	CITITIOUEI		0.5	1	3	5	None	connector	Applio		
size		IUIICUOII	entry	ldi	(Output)		DC	AC	Perpendicular	In-line	type	(Nil)	(M)	(L)	(Z)	(N)	CONNECTOR	100	au	1
					3-wire (NPN)		5 V,		M9NV	M9N		•	•	•	0	_	0	IC		1
	Solid				3-wire (PNP)	1	12 V		M9PV	M9P	Oilproof	•	•	•	0	_	0	circuit		
	state	_		Yes	2-wire	1	12 V	1	M9BV	М9В	Oilproof	•	•	•	0	_	0	_	1	
For	auto	-		res	3-wire (NPN)	1	5 V,	1 –	S99V	S99	heavy-duty cord	•	_	•	0	_	0	IC		
_	switch		Grommet		3-wire (PNP)	24 V	12 V		S9PV	S9P	Coru	•	_	•	0	_	0	circuit	Relay,	
10, 15			Gioiiiiiet		2-wire]24 V	12 V		T99V	T99		•	_		0	_	0	_	PLC	
13	Reed			No			5 V, 12 V	5 V, 12 V, 24 V	-	90	Vinyl parallel cord	•	_			_		IC		
	auto	_		INO	2-wire		5 V, 12 V, 100 V	5 V, 12 V, 24 V, 100 V	ı	90A	Oilproof heavy-duty cord	•	_	•		_	_	circuit		
	switch	-		Yes				_	_	97	Vinyl parallel cord	•	_			_				
	SWILCII			163				100 V	_	93A	Oilproof heavy-duty cord	•	_	•	•	_				
					3-wire (NPN)		5 V,		M9NV	M9N		•	•	•	0	_	0	IC		
	Solid				3-wire (PNP)		12 V		M9PV	M9P		•	•	•	0	_	0	circuit		
	state		Grommet		2-wire		12 V		M9BV	M9B			•	•	0	_	0	_		
For	auto	-	alominet	Yes	3-wire (NPN)		5 V,	_	_	S79		•		•	0	_	0	IC		'
20,	switch				3-wire (PNP)		12 V		_	S7P	Oilproof	•	_	•	0	_	0	circuit	Relay,	
30,	O TOTAL COLO				2-wire	24 V	12 V		_	T79	heavy-duty	•	_	•	0	_	0	_	PLC	
40			Connector		Z WIIC		12 4		_	T79C	cord	•	_	•	•	•				
40	Reed		Grommet	Yes			_	100 V	_	R73		•	_	•	0	_		_		
	auto	_	Connector	103	2-wire			_	-	R73C		•		•	•	•	_			
	switch		Grommet	No			48 V, 100 V	100 V	_	R80		•	_	•	0	_		IC circuit		
	Jto.		Connector	. 40			_	24 V or less	_	R80C			_					_		

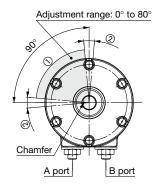
- Auto switches are shipped together with the product but do not come assembled.
- Auto switches marked with a "O" are produced upon receipt of order.

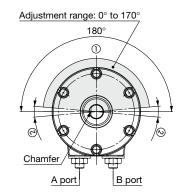
CRB □-B/CRB □-C Series


Rotating Angle with Angle Adjustment Unit

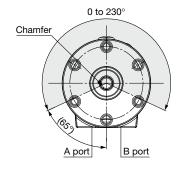

- Drawings below are viewed from the long shaft side.
- The position of the chamfered portion illustrates the conditions of actuators when B port is pressurized.
- Operate within the adjustment range.

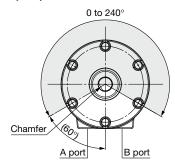
Rotating Angle with Angle Adjustment Unit


Single vane for 90°/180°

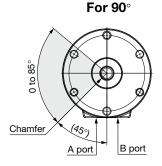

Size: 10, 15

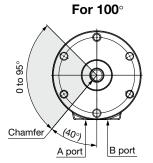
Size: 20, 30, 40




- ① shows the angle adjustment unit adjustment range.
- ② shows the adjustment bolt adjustment range.

Single vane for 270°


Size: 10, 40



Size: 15, 20, 30

Double vane

Vane type	Rotating angle	Size										
varie type	(Body)	10	15	20	30	40						
0: 1	90°	0 to	85°	① 0 to	o 80° ② 90)°±10°						
Single vane	180°	0 to	175°	① 0 to	80°±10°							
varie	270°	0 to 230 $^{\circ}$		0 to 240°		0 to 230°						
Double	90°			0 to 85°								
vane	100°			0 to 95°								

Rotating Angle Adjustment Method

- The figures below show the default position of the angle adjustment unit.
- The rotating angle can be adjusted by moving stopper blocks (A) and (B), which are shown in the figures below.
- The figures below show size 20.
- * Make adjustments when pressure is not being applied.

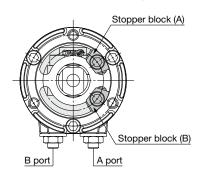


Fig. Default position (Single vane)

The specifications and inner volume are the same as those of the standard type. (\rightarrow p. 17)

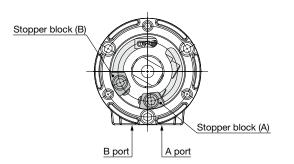


Fig. Default position (Double vane)

Recommended Torque for Securing the Stopper Blocks

-	
Size	Tightening torque [N·m]
10	1.0 to 1.2
15	1.0 to 1.2
20	2.5 to 2.9
30	3.4 to 3.9
40	3.4 to 3.9

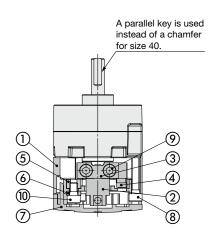
Weight

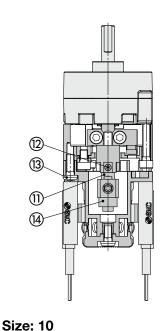
																									<u>[g]</u>
Vane type		Single vane type							9						Double vane type										
Size		10			15			20			30			40		1	0	1	5	2	0	3	0	4	0
Rotating angle	90°	180°	270°	90°	180°	270°	90°	180°	270°	90°	180°	270°	90°	180°	270°	90°	100°	90°	100°	90°	100°	90°	100°	90°	100°
Basic type	27	26	26	47	46	46	110	107	106	203	197	195	378	360	366	43	43	55	55	116	116	218	218	415	414
Vertical auto switch unit		15			20			28			38			43		1	5	2	:0	2	8	3	8	4	3
Angle adjustment unit		30			47			90			150			203		3	0	4	7	9	0	15	50	20	03

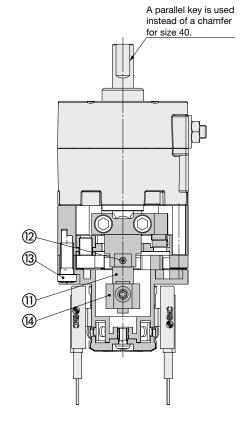
A flange mounting bracket assembly is available as an option. For details, refer to page 56.

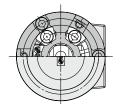
CRB □-B/CRB □-C Series

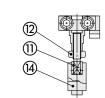
Construction: With Angle Adjustment Unit, With Vertical Auto Switch Unit and Angle Adjustment Unit


• Components other than those specified below are the same as those of the standard type.


With angle adjustment unit

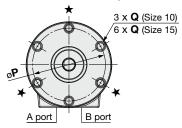

Size: 10, 15, 20, 30, 40

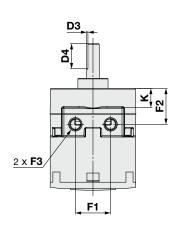

With vertical auto switch unit and angle adjustment unit

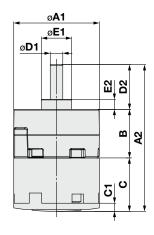

Size: 10, 15 Size: 20, 30, 40

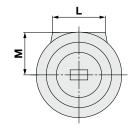
Component Parts

No.	Description	Material	Note
1	Stopper ring	Aluminum alloy	
2	Stopper lever	Chrome molybdenum steel	
3	Lever retainer	Rolled steel	Zinc chromating
4	Rubber bumper	NBR	
5	Stopper block	Chrome molybdenum steel	Zinc chromating
6	Block retainer	Rolled steel	Zinc chromating
7	Сар	Resin	_
8	Hexagon socket head cap screw	Stainless steel	Special screw
9	Hexagon socket head cap screw	Stainless steel	Special screw
10	Hexagon socket head cap screw	Stainless steel	Special screw
11	Joint		_
12	Hexagon socket set screw	Stainless steel	Hexagon nut will be
12	Hexagon nut	Stainless steel	used for size 10 only.
13	Cross recessed round head screw	Stainless steel	
14	Magnet lever	_	


Model Selection


Dimensions: Single Vane Type With Angle Adjustment Unit (10, 15)

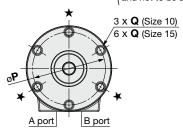

CRBW-B (For 90° and 180°)

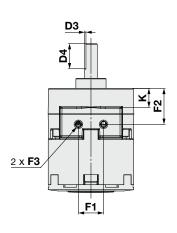

• Following figures show actuators when B port is pressurized.

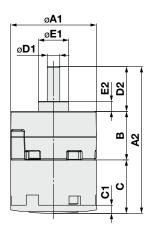
|3 mounting holes with the ★ marks are for tightening the actuator and not to be used for external mounting for size 10.

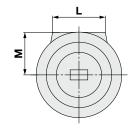
Size	,	A	D	С					E		E			E F			K		М
Size	A1	A2	Б	С	C1	D1 (g7)	D2	D3	D4	E1 (h9)	E2	F1	F2	F3		-	IVI		
10	29	48.5	15	19.5	3	$4^{-0.004}_{-0.015}$	14	0.5	9	9_0.036	3	12	9.8	M5 x 0.8	3.6	19.8	14.6		
15	34	59	20	21	3	5 ^{-0.004} -0.016	18	0.5	10	12_0.043	4	14	14.3	M5 x 0.8	7.6	24	17.1		

Size	Р	Q
10	24	M3 x 0.5 depth 6
15	29	M3 x 0.5 depth 5


CRB□-**B** Series


Dimensions: Single Vane Type With Angle Adjustment Unit (10, 15)

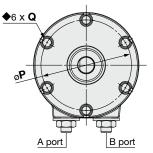

CRBW-B (For 270°)

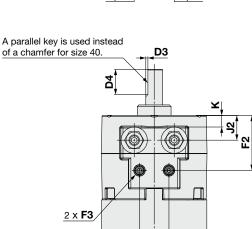

• Following figures show the position of the ports during rotation.

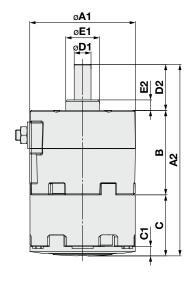
(3 mounting holes with the ★ marks are for tightening the actuator and not to be used for external mounting for size 10.

[mm]

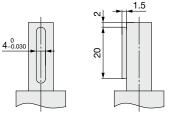
Size		A	В	С			D			E		E F			V		м
Size	A1	A2	В	С	C1	D1 (g7)	D2	D3	D4	E1 (h9)	E2	F1	F2	F3	I.	-	IVI
10	29	48.5	15	19.5	3	4 ^{-0.004} -0.015	14	0.5	9	9_0.036	3	9.5	9.8	M3 x 0.5	3.6	19.8	14.6
15	34	59	20	21	3	5 ^{-0.004} _{-0.016}	18	0.5	10	12_0.043	4	10	14.3	M3 x 0.5	7.6	24	17.1


Size	Р	Q
10	24	M3 x 0.5 depth 6
15	29	M3 x 0.5 depth 5




Dimensions: Single Vane Type With Angle Adjustment Unit (20, 30, 40)

CRBW-B (For 90° and 180°)


• Following figures show actuators when B port is pressurized.

For size 40

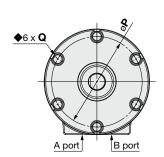
Parallel key dimensions

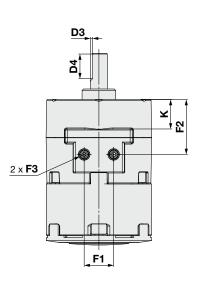
L1	<u> </u>	=
b (h9)	h (h9)	L1
4_0.030	4_0.030	20

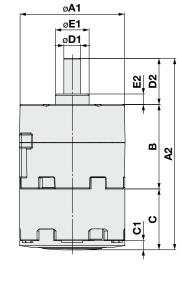
F1

																	[mm]
Size	АВ		Р	С		D			E			F		J			
	A1	A2	В	С	C1	D1 (g7)	D2	D3	D4	E1 (h9)	E2	F1	F2	F3	J1	J2	J3
20	42	74	29	25	4	6 ^{-0.004} -0.016	20	0.5	10	$14_{-0.043}^{0}$	4.5	13	18.3	M5 x 0.8	16	7.1	27.4
30	50	91	40	29	4.5	8 ^{-0.005} -0.020	22	1	12	16 _{-0.043}	5	14	26	M5 x 0.8	19	11.8	32.7
40	63	111.3	45	36.3	5	10 ^{-0.005} -0.020	30	_	_	25 _{-0.052}	6.5	20	31.1	M5 x 0.8	28	15.8	44.1

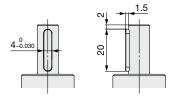
Size	К	L	Р	Q
20	_	28	36	M4 x 0.7 depth 7
30	5.5	31.5	43	M5 x 0.8 depth 10
40	9.5	40	56	M5 x 0.8 depth 10

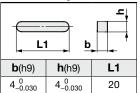



CRB □-**B** Series


Dimensions: Single Vane Type With Angle Adjustment Unit (20, 30, 40)

CRBW-B (For 270°)


• Following figures show the position of the ports during rotation.

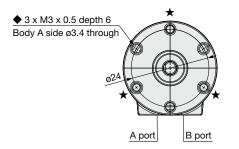


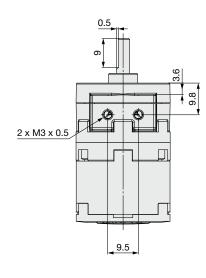
For size 40

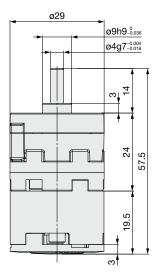
Parallel key dimensions

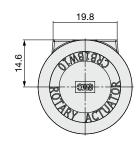
	L	
—		
_		
Σ		///
<u> </u>	(S769@)	\mapsto
		///
		//
	1	

														[mm]
Size		Α	В	С		D				E			F	
	A1	A2	В	С	C1	D1 (g7)	D2	D3	D4	E1 (h9)	E2	F1	F2	F3
20	42	74	29	25	4	6 ^{-0.004} -0.016	20	0.5	10	14_0.043	4.5	13	18.3	M5 x 0.8
30	50	91	40	29	4.5	8 ^{-0.005} -0.020	22	1	12	16 _{-0.043}	5	14	26	M5 x 0.8
40	63	111.3	45	36.3	5	$10^{-0.005}_{-0.020}$	30	_	_	25_0.052	6.5	20	31.1	M5 x 0.8


Size	К	L	М	Р	Q
20	10.5	28	21	36	M4 x 0.7 depth 7
30	14	31.5	25	43	M5 x 0.8 depth 10
40	17	40	31.6	56	M5 x 0.8 depth 10

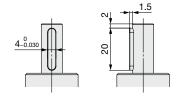

Dimensions: Double Vane Type With Angle Adjustment Unit 10

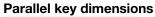

CRBW10-□D-B (For 90° and 100°)

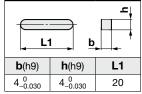

• The following figures show the position of the ports during rotation when the A or B port is pressurized.

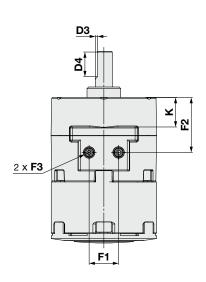
The 3 mounting holes marked with a ★ are for tightening the actuator) and are not to be used for external mounting.

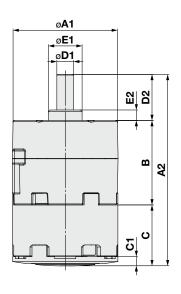
CRB □-**B** Series

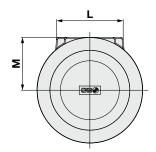

Dimensions: Double Vane Type With Angle Adjustment Unit (15, 20, 30, 40)


CRBW-□D-B (For 90° and 100°)


• The following figures show the position of the ports during rotation when the A or B port is pressurized.

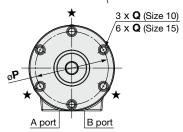

♦6 x Q A port B port

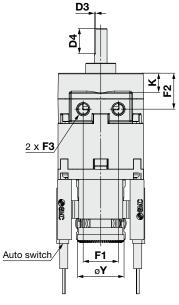

For size 40

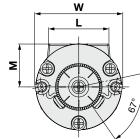


Size	АВ		С		D			E			F		K		
	A1	A2	В	С	C1	D1 (g7)	D2	D 3	D4	E1 (h7)	E2	F1	F2	F3	, N
15	34	59	20	21	3	5 ^{-0.004} _{-0.016}	18	0.5	10	12_0.043	4	10	14.3	M3 x 0.5	7.6
20	42	74	29	25	4	6 ^{-0.004} -0.016	20	0.5	10	14_0.043	4.5	13	18.3	M5 x 0.8	10.5
30	50	91	40	29	4.5	8 ^{-0.005} -0.020	22	1	12	16_0.043	5	14	26	M5 x 0.8	14
40	63	111.3	45	36.3	5	10 ^{-0.005} -0.020	30	_	_	25_0.052	6.5	20	31.1	M5 x 0.8	17

Size	L	М	Р	Q
15	24	17.1	29	M3 x 0.5 depth 5
20	28	21	36	M4 x 0.7 depth 7
30	31.5	25	43	M5 x 0.8 depth 10
40	40	31.6	56	M5 x 0.8 depth 10

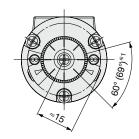

Vane Type Rotary Actuator With Vertical Auto Switch Unit and Angle Adjustment Unit CRB —- C Series


Dimensions: Single Vane Type With Vertical Auto Switch Unit and Angle Adjustment Unit (10, 15)


CRBW-C (For 90° and 180°)

• Following figures show actuators when B port is pressurized.

/3 mounting holes with the ★ marks are for tightening the actuator and not to be used for external mounting for size 10.



D-M9□

ø**D**1 ß ပ

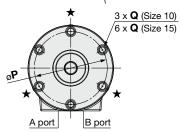
ø**A1** ø**E1**

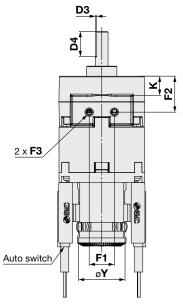
D-S/T99(V), S9P(V), D-97/93A, 90/90A

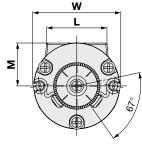
^{*1} The angle is 60° when any of the following are used: D-90/90A/97/93A The angle is 69° when any of the following are used: D-S99(V)/T99(V)/S9P(V)

															[mm]
Size		Α	В	_	D			E	F			K			
	A1	A2	Б		D1 (g7)	D2	D3	D4	E1 (h9)	E2	F1	F2	F3		_
10	29	74.5	15	45.5	4 ^{-0.004} -0.015	14	0.5	9	9_0.036	3	12	9.8	M5 x 0.8	3.6	19.8
15	34	85	20	47	5 ^{-0.004} 5 _{-0.016}	18	0.5	10	12_0.043	4	14	14.3	M5 x 0.8	7.6	24

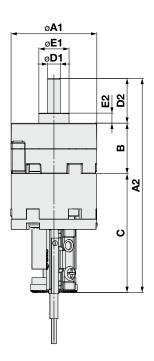
Size	М	Р	Q	w	Y
10	14.6	24	M3 x 0.5 depth 6	35	18.5
15	17.1	29	M3 x 0.5 depth 5	35	18.5

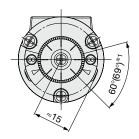

CRB □-C Series


Dimensions: Single Vane Type With Vertical Auto Switch Unit and Angle Adjustment Unit (10, 15)


CRBW-C (For 270°)

• Following figures show the position of the ports during rotation.


(3 mounting holes with the ★ marks are for tightening the actuator and not to be used for external mounting for size 10.

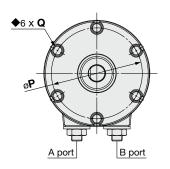


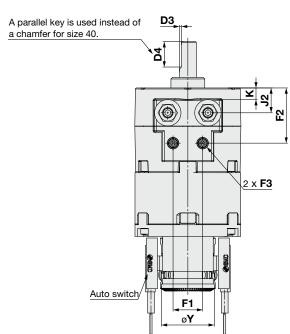
D-M9□

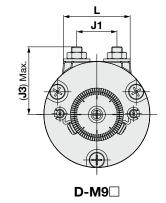
D-S/T99(V), S9P(V), D-97/93A, 90/90A

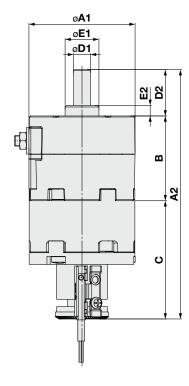
^{*1} The angle is 60° when any of the following are used: D-90/90A/97/93A The angle is 69° when any of the following are used: D-S99(V)/T99(V)/S9P(V)

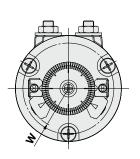
															[mm]
Size		АВС			D				E F				K		
	A1	A2		C	D1 (g7)	D2	D3	D4	E1 (h9)	E2	F1	F2	F3	 	_
10	29	74.5	15	45.5	4 ^{-0.004} -0.015	14	0.5	9	9_0.036	3	9.5	9.8	M3 x 0.5	3.6	19.8
15	34	85	20	47	5 ^{-0.004} -0.016	18	0.5	10	12_0.043	4	10	14.3	M3 x 0.5	7.6	24

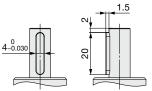

Size	М	Р	Q	w	Y	
10	14.6	24	M3 x 0.5 depth 6	35	18.5	
15	17.1	29	M3 x 0.5 depth 5	35	18.5	




Dimensions: Single Vane Type With Vertical Auto Switch Unit and Angle Adjustment Unit (20, 30, 40)


CRBW-C (For 90° and 180°)


• Following figures show actuators when B port is pressurized.



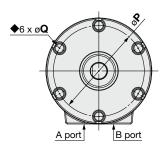
D-S/T79□, S7P, R73/80□

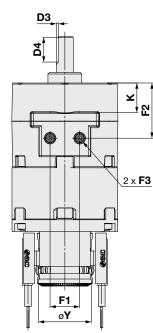
For size 40

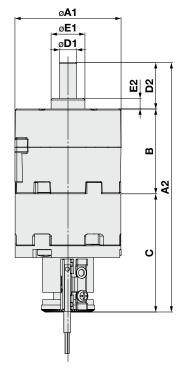
Parallel key dimensions

L1	<u> </u>	٤
b (h9)	h (h9)	L1
4_0.030	4_0.030	20

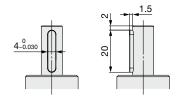
Size		Α	В	_		D			Е			F	•		J		V		В	0	W	V
Size	A1	A2	D	C	D1 (g7)	D2	D3	D4	E1 (h9)	E2	F1	F2	F3	J1	J2	J3	,	_	-	ų ų	VV	1
20	42	100	29	51	6 ^{-0.004} -0.016	20	0.5	10	14_0.043	4.5	13	18.3	M5 x 0.8	16	7.1	27.4	_	28	36	M4 x 0.7 depth 7	19.5	25
30	50	117.5	40	55.5	8 ^{-0.005} -0.020	22	1	12	16_0.043	5	14	26	M5 x 0.8	19	11.8	32.7	5.5	31.5	43	M5 x 0.8 depth 10	19.5	25
40	63	137.2	45	62.2	10-0.005	30	_	_	25_0.052	6.5	20	31.1	M5 x 0.8	28	15.8	44.1	9.5	40	56	M5 x 0.8 depth 10	22.5	31

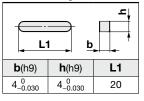

[mm]

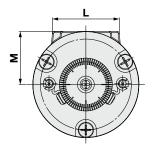

CRB □-**C** Series

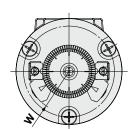

Dimensions: Single Vane Type With Vertical Auto Switch Unit and Angle Adjustment Unit (20, 30, 40)

CRBW-C (For 270°)


• Following figures show the position of the ports during rotation.





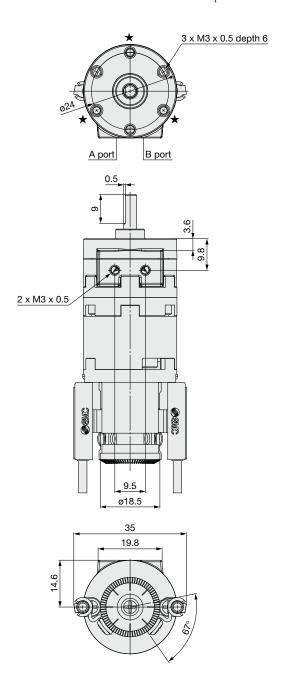

For size 40

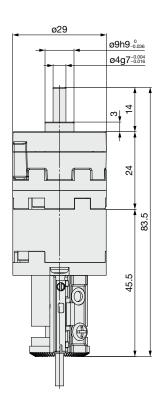
Parallel key dimensions

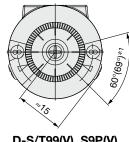
[r	n	m]

Size		A	В		D			E		F			
Size	A1	A2	Б		D1 (g7)	D2	D3	D4	E1 (h9)	E2	F1	F2	F3
20	42	100	29	51	6 ^{-0.004} -0.016	20	0.5	10	14_0.043	4.5	13	18.3	M5 x 0.8
30	50	117.5	40	55.5	8 ^{-0.005} -0.020	22	1	12	16_0.043	5	14	26	M5 x 0.8
40	63	137.2	45	62.2	10 ^{-0.005} -0.020	30	_	_	25 _{-0.052}	6.5	20	31.1	M5 x 0.8

Size	K	L	М	Р	Q	W	Y
20	10.5	28	21	36	M4 x 0.7 depth 7	19.5	25
30	14	31.5	25	43	M5 x 0.8 depth 10	19.5	25
40	17	31.5	31.6	56	M5 x 0.8 depth 10	22.5	31


Vane Type Rotary Actuator With Vertical Auto Switch Unit and Angle Adjustment Unit CRB —- C Series


Dimensions: Double Vane Type With Vertical Auto Switch Unit and Angle Adjustment Unit 10


CRBW10-□D-C (For 90° and 100°)

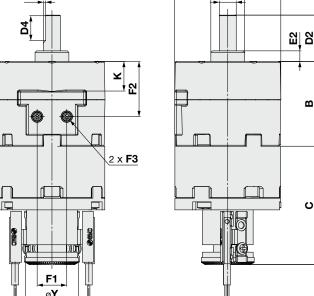
• The following figures show the position of the ports during rotation when the A or B port is pressurized.

The 3 mounting holes marked with a * are for tightening the actuator | and are not to be used for external mounting.

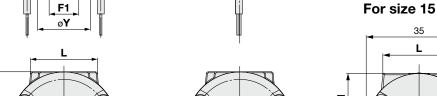
D-S/T99(V), S9P(V), D-97/93A, 90/90A

^{*1} The angle is 60° when any of the following are used: D-90/90A/97/93A The angle is 69° when any of the following are used: D-S99(V)/T99(V)/S9P(V)

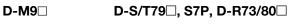
CRB □-C Series

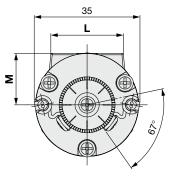

Dimensions: Double Vane Type With Vertical Auto Switch Unit and Angle Adjustment Unit (15, 20, 30, 40)

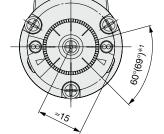
CRBW-□D-B (For 90° and 100°)


• The following figures show the position of the ports during rotation when the A or B port is pressurized.

For size 40 Parallel key dimensions øA1 B port A port ø**E1** D3 ø**D**1


Ŗ




b(h9) **h**(h9) $4_{-0.030}^{\ 0}$ $4_{-0.030}^{\ \ \, 0}$ 20

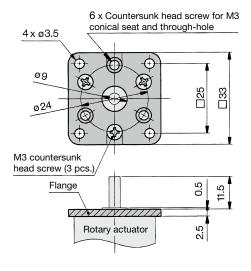
Σ

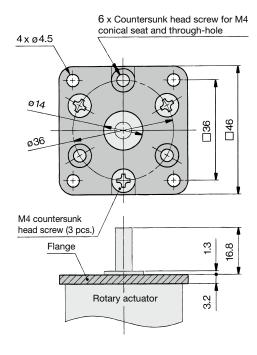
D-M9□

D-S/T99(V), S9P(V), D-97/93A, 90/90A

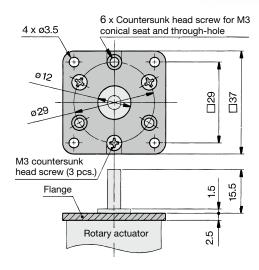
*1 The angle is 60° when any of the following are used: D-90/90A/97/93A The angle is 69° when any of the following are used: D-S99(V)/T99(V)/S9P(V)

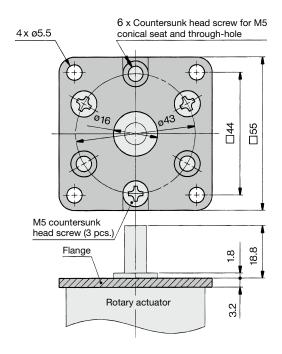
															[mm]
Size		Α	В	С		D			E			F		K	
Size	A1	A2	ь		D1 (g7)	D2	D3	D4	E1 (h7)	E2	F1	F2	F3	^	L
15	34	85	20	47	5 ^{-0.004} 5 ^{-0.016}	18	0.5	10	12_0.043	4	10	14.3	M3 x 0.5	7.6	24
20	42	100	29	51	6 ^{-0.004} -0.016	20	0.5	10	14-0.043	4.5	13	18.3	M5 x 0.8	10.5	28
30	50	117.5	40	55.5	8 ^{-0.005} -0.020	22	1	12	16_0.043	5	14	26	M5 x 0.8	14	31.5
40	63	137.2	45	62.2	10 ^{-0.005} -0.020	30	_	_	$25^{\ 0}_{-0.052}$	6.5	20	31.1	M5 x 0.8	17	40


Size	М	P	Q	w	Y
15	17.1	29	M3 x 0.5 depth 5	_	18.5
20	21	36	M4 x 0.7 depth 7	19.5	25
30	25	43	M5 x 0.8 depth 10	19.5	25
40	31.6	56	M5 x 0.8 depth 10	22.5	31


Model Selection

Flange Dimensions/Part Nos.


Flange assembly for size 10 Part no.: P211070-2

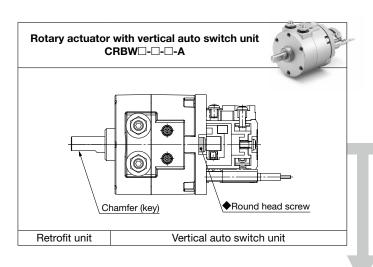

Flange assembly for size 20 Part no.: P211060-2

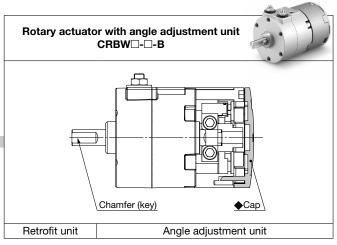
Flange assembly for size 15 Part no.: P211090-2

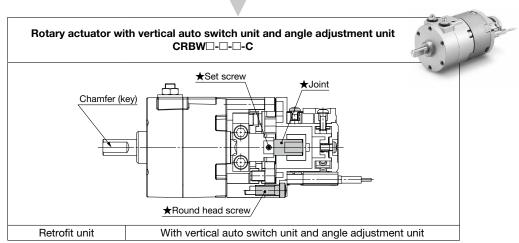
Flange assembly for size 30 Part no.: P211080-2

Weight

•• cigiit				[9]
Size	10	15	20	30
Flange assembly	9	10	19	25


CRB Series


Component Unit


With Vertical Auto Switch Unit, Angle Adjustment Unit

With Vertical Auto Switch Unit and Angle Adjustment Unit

CRB Series Various units can be mounted to a vane type rotary actuator.

- * The combination of the auto switch unit and angle adjustment unit is available as standard.
- The items marked with ★ are additional parts required for connection (joint unit parts), and the items marked with ♦ are unnecessary.
- * Use a unit part number when ordering joint unit separately.

Part Number for Vertical Auto Switch Unit

	For D	- M 9□	Excluding D-M9□					
Size	Vertical auto switch unit*1	Switch block unit	Vertical auto switch unit	Switch blo	ock unit ^{*2}			
	vertical auto switch unit	Common to right-hand and left-hand	vertical auto switch unit	Right-hand	Left-hand			
10	P611070-1M	P811010-8M	P611070-1	P611070-8	P611070-9			
15	P611090-1M	P611010-6W	P611090-1	P611070-6				
20	P611060-1M	P811030-8M	P611060-1	D611	060.8			
30	P611080-1M	P611030-6W	P611080-1	P611060-8				
40	P611010-1M	P811010-8M	P611010-1	P611010-8	P611010-9			

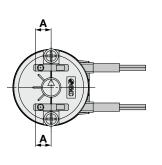
Part Number for Angle Adjustment Unit

Size	Angle adjustment unit	Vertical auto switch unit,	Angle adjustment unit*1	Joint unit*3
Size	Angle adjustifient unit	For D-M9 Excluding D-M9		Joint unit
10	P811010-3	P811010-4M	P811010-4	P211070-10
15	P811020-3	P811020-4M	P811020-4	P211090-10
20	P811030-3	P811030-4M	P811030-4	P211060-10
30	P811040-3	P811040-4M	P811040-4	P211080-10
40	P811050-3	P811050-4M	P811050-4	P211010-10

^{*1} An auto switch will not be included, please order it separately.

^{*2} Auto switch unit comes with one right-hand and one left-hand switch blocks that are used for addition or when the switch block is damaged. Since the solid state auto switch for sizes 10 and 15 requires no switch block, the unit part number will be the P211070-13.

^{*3} The joint unit is necessary when adding an angle adjustment unit to a vertical auto switch unit, or when adding a vertical auto switch unit to an angle adjustment unit.

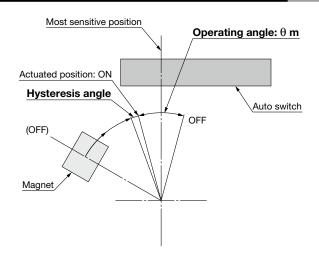

CRB Series

Auto Switch Mounting

Auto Switch Proper Mounting Position (at Rotation End Detection)

CDRB10, 15 Size: 10, 15

CDRB20, 30 Size: 20, 30, 40



	[mm]
	Solid state auto switch
Size	D-M 9□
	A
10	6
15	6
20	6
30	6
40	6

* Since the figures in the table on the left are provided as a guideline only, they cannot be guaranteed. Adjust the auto switch after confirming the operating conditions in the actual

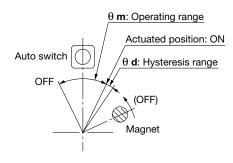
Proper tightening torque: 0.05 to 0.15 [N·m]

Operating Angle and Hysteresis Angle

	Solid state auto switch				
Size	D-M				
	Operating angle [θ m]	Hysteresis angle			
10	36°	5°			
15	36°	5°			
20	20°	5°			
30	20°	5°			
40	20°	5°			

Since the figures in the table on the left are provided as a guideline only, they cannot be guaranteed. Adjust the auto switch after confirming the operating conditions in the actual setting.

Proper tightening torque: 0.05 to 0.15 [N·m]


Operating Range and Hysteresis

Operating range: θ m

The range is between the position where the auto switch turns ON as the magnet inside the auto switch unit moves rotationally and the position where the auto switch turns OFF as the magnet moves rotationally in the same direction.

Hysteresis range: θ d

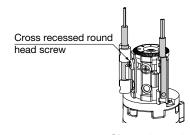
The range is between the position where the auto switch turns ON as the magnet inside the auto switch unit moves rotationally and the position where the auto switch turns OFF as the magnet moves rotationally in the opposite direction.

D-M9□

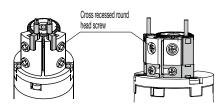
Size	θ m: Operating range	θ d: Hysteresis range
10, 15	170°	20°
20, 30	100°	15°
40	86°	10°

D-S/T99(V), S9P(V), S/T79□, S7P, D-97/93A, 90/90A, R73/80

Size	θ m: Operating range	θ d: Hysteresis range
10, 15	110°	10°
20, 30	90°	10
40	52°	8°


* Since the figures in the table above are provided as a guideline only, they cannot be guaranteed. Adjust the auto switch after confirming the operating conditions in the actual setting.

How to Change the Auto Switch Detecting Position


* When setting the detecting position, loosen the cross recessed round head screw a bit and move the auto switch to the preferred position and then tighten again and fix it. At this time, if tightened too much, screw can become damaged and unable to fix position.

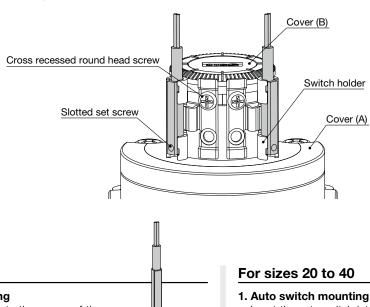
Proper tightening torque: 0.4 to 0.6 [N·m]

When tightening the cross recessed round head screw, take care that the auto switch does not tilt.

Size: 10 to 40 **D-M9**□

Size: 10, 15

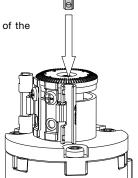
Size: 20 to 40


D-S/T99(V), S9P(V), S/T79□, S7P, D-97/93A, 90/90A, R73/80

CRB □-A/C Series

Auto Switch Mounting: Sizes 10 to 40 (D-M9□)

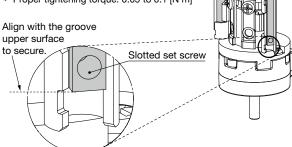
External view and descriptions of auto switch unit



For sizes 10, 15

1. Auto switch mounting

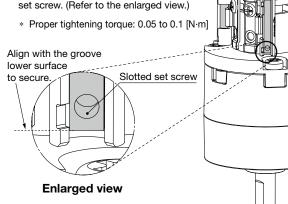
Insert the auto switch into the groove of the switch holder.


Insert the auto switch into the groove of the switch holder.

2. Auto switch securing

Align the auto switch with the upper surface of the groove on the side of the switch holder, and secure the slotted set screw. (Refer to the enlarged view.)

 $\ast\,$ Proper tightening torque: 0.05 to 0.1 [N·m]


Enlarged view

Switch holder securing
 After the actuated position has been adjusted with the cross recessed round head screw, use the auto switch.

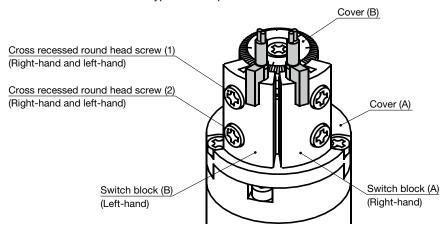
* When tightening the screw, take care that the auto switch does not tilt.

2. Auto switch securing

Align the auto switch with the lower surface of the groove on the side of the switch holder, and secure the slotted set screw. (Refer to the enlarged view.)

3. Switch holder securing

After the actuated position has been adjusted with the cross recessed round head screw, use the auto switch.

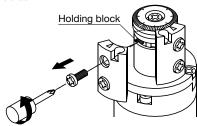

* When tightening the screw, take care that the auto switch does not tilt.

Auto Switch Mounting: Sizes 10, 15 (D-S/T99(V), S9P(V), 97/93A, 90/90A)

External view and descriptions of auto switch unit

The following shows the external view and typical descriptions of the auto switch unit.

Solid state auto switch

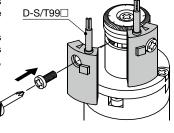

<Applicable auto switch>

3-wire type.....D-S99(V), S9P(V)

2-wire type.....D-T99(V)

1. Switch block detaching

Remove the cross recessed round head screw (1) to detach the switch block.



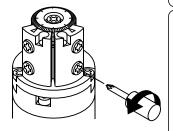
2. Auto switch mounting

Secure the auto switch with the cross recessed round head screw (1) and holding block. Proper tightening torque: 0.4 to 0.6 [N·m]

* Since the holding block moves inside the groove, move it to the mounting position beforehand. After the actuated position has

been adjusted with the cross recessed round head screw (1), use the auto switch.

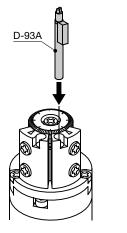
Reed auto switch


<Applicable auto switch>

D-97/93A (With indicator light) D-90/90A (Without indicator light)

1. Preparations

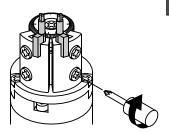
Loosen the cross recessed round head screw (2) (About 2 to 3 turns).


* This screw has been secured temporarily at shipment.

2. Auto switch mounting

Insert the auto switch until it is in contact with the switch block hole.

- * For the D-97/93A, insert the auto switch in the direction shown in the figure on the right.
- * Since the D-90/90A is a round type, it has no directionality.

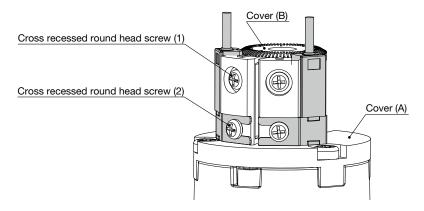


3. Auto switch securing

Tighten the cross recessed round head screw (2) to secure the auto switch.

Proper tightening torque: 0.4 to 0.6 [N·m]

 \cdot After the actuated position has been adjusted with the cross recessed round head screw (1), use the auto switch.



CRB □-A/C Series

Auto Switch Mounting: Sizes 20 to 40 (D-S/T79□, S7P, R73/80□)

External view and descriptions of auto switch unit

Mounting Procedure

<Applicable auto switch>

Solid state auto switch

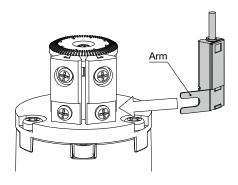
D-S79, S7P D-T79, T79C Reed auto switch

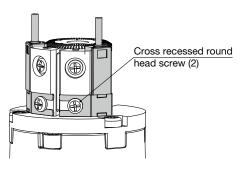
D-R73, R73C D-R80, R80C

1. Auto switch mounting

Loosen the cross recessed round head screw (2), and insert the arm of the auto switch.

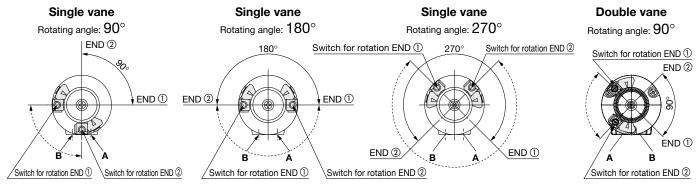
2. Auto switch securing


Set the auto switch so that it is in contact with the switch block, and tighten the cross recessed round head screw (2).


* Proper tightening torque: 0.4 to 0.6 [N·m]

3. Switch holder securing

After the actuated position has been adjusted with the cross recessed round head screw (1), use the auto switch.


* Proper tightening torque: 0.4 to 0.6 [N·m]

Auto Switch Adjustment

Rotation range of the output shaft with single flat (key for size 40 only) and auto switch mounting position <Applicable models/Size: 10, 15, 20, 30, 40>

- * Solid-lined curves indicate the rotation range of the output shaft with single flat (key). When the single flat (key) is pointing to the END ① direction, the switch for rotation END ① will operate, and when the single flat (key) is pointing to the END ② direction, the switch for rotation END ② will operate.
- * Broken-lined curves indicate the rotation range of the built-in magnet. Operating angle of the switch can be decreased by either moving the switch for rotation END ① clockwise or moving the switch for rotation END ② counterclockwise. Auto switch in the figures above is at the most sensitive position.
- Each auto switch unit comes with one right-hand and one left-hand switches.

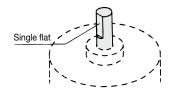
CRB Series Specific Product Precautions

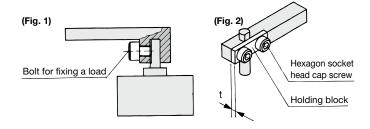
Be sure to read this before handling the products. Refer to the back cover for safety instructions. For rotary actuator and auto switch precautions, refer to the "Handling Precautions for SMC Products" and the "Operation Manual" on the SMC website.


How to Mount Loads

How to connect a load directly to a single flat shaft

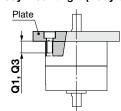
To secure the load, select a bolt of an appropriate size from those listed in tables 1 and 2 by taking the shaft's single flat bearing stress strength into consideration.


Table 1 Directly Fixed with Bolts (Refer to Fig. 1.)


Size	Shaft dia.	Bolt size	
10	4	M4 or larger	
15	5	M5 or larger	
20	6	ivio or larger	
30	8	M6 or larger	

Size	Shaft dia.	Bolt size	Plate thickness (t)
10	4	MO on longer	2 or wider
15	5	M3 or larger	2.3 or wider
20	6	M4 or larger	3.6 or wider
30	8	M5 or larger	4 or wider

The plate thickness (t) in the table above indicates a reference value when a carbon steel is used. Besides, we do not manufacture a holding block.

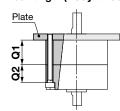


Mounting

Refer to the table below when tightening the mounting bolts.

Mounting 1

Body mounting 1 (Body tapped)



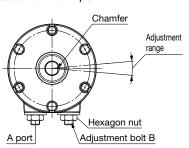
Size	Bolt	Recommended tightening torque [N·m]
10	M3	0.63
15	M3	0.63
20	M4	1.50
30	M5	3.0
40	M5	3.0

Refer to the Dimensions for Q1 and Q3 dimensions.

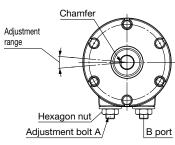
Mounting 2

Body mounting 2 (Body through-hole)

Size	Bolt	Recommended tightening torque [N·m]
10	M2.5	0.36
15	M2.5	0.36
20	M3	0.63
30	M4	1.50
40	M4	1.50


- $\ast\,$ Refer to the Dimensions for Q1 and Q2 dimensions.
- * Only for standard CRB without auto switch

Adjustment


Do not apply a load when adjusting the rotating angle.

Example) For 180 degrees

1. Set the adjustment bolt B while supplying pressure from the A port.

2. Set the adjustment bolt A while supplying pressure from the B port.

☆ Recommended tightening torque for hexagon nut to fix the adjustment bolt Size 20: 1.5 N·m Sizes 30, 40: 3 N·m

⚠ Safety Instructions

These safety instructions are intended to prevent hazardous situations and/or equipment damage. These instructions indicate the level of potential hazard with the labels of "Caution," "Warning" or "Danger." They are all important notes for safety and must be followed in addition to International Standards (ISO/IEC)*1), and other safety regulations.

⚠ Danger: Danger indicates a hazard with a high level of risk which, if not avoided, will result in death or serious injury.

⚠ Warning: Warning indicates a hazard with a medium level of risk which, if not avoided, could result in death or serious injury.

⚠ Caution: Caution indicates a hazard with a low level of risk which, if not avoided, could result in minor or moderate injury.

*1) ISO 4414: Pneumatic fluid power - General rules and safety requirements for systems and their components ISO 4413: Hydraulic fluid power - General rules and safety requirements for systems and their components IEC 60204-1: Safety of machinery - Electrical equipment of machines - Part 1: General requirements ISO 10218-1: Robots and robotic devices - Safety requirements for industrial robots - Part 1:Robots

. Warning

1. The compatibility of the product is the responsibility of the person who designs the equipment or decides its specifications.

Since the product specified here is used under various operating conditions, its compatibility with specific equipment must be decided by the person who designs the equipment or decides its specifications based on necessary analysis and test results. The expected performance and safety assurance of the equipment will be the responsibility of the person who has determined its compatibility with the product. This person should also continuously review all specifications of the product referring to its latest catalog information, with a view to giving due consideration to any possibility of equipment failure when configuring the equipment.

2. Only personnel with appropriate training should operate machinery and equipment.

The product specified here may become unsafe if handled incorrectly. The assembly, operation and maintenance of machines or equipment including our products must be performed by an operator who is appropriately trained

- 3. Do not service or attempt to remove product and machinery/ equipment until safety is confirmed.
 - 1. The inspection and maintenance of machinery/equipment should only be performed after measures to prevent falling or runaway of the driven objects have been confirmed.
 - 2. When the product is to be removed, confirm that the safety measures as mentioned above are implemented and the power from any appropriate source is cut, and read and understand the specific product precautions of all relevant products carefully.
 - 3. Before machinery/equipment is restarted, take measures to prevent unexpected operation and malfunction.
- 4. SMC products cannot be used beyond their specifications. They are not developed, designed, and manufactured to be used under the following conditions or environments. Use under such conditions or environments is not allowed.
 - 1. Conditions and environments outside of the given specifications, or use outdoors or in a place exposed to direct sunlight.
 - 2. Use for nuclear power, railways, aviation, space equipment, ships, vehicles, military application, equipment affecting human life, body, and property, combustion equipment, entertainment equipment, emergency shut-off circuits, press clutches, brake circuits, safety equipment, etc., and use for applications that do not conform to standard specifications such as catalogs and operation manuals.
 - 3. Use for interlock circuits, except for use with double interlock such as installing a mechanical protection function in case of failure. Please periodically inspect the product to confirm that the product is operating properly.

⚠ Caution

SMC develops, designs, and manufactures products to be used for automatic control equipment, and provides them for peaceful use in manufacturing industries.

Use in non-manufacturing industries is not allowed.

Products SMC manufactures and sells cannot be used for the purpose of transactions or certification specified in the Measurement Act of each country. The new Measurement Act prohibits use of any unit other than SI units in

Limited warranty and Disclaimer/ Compliance Requirements

The product used is subject to the following "Limited warranty and Disclaimer" and "Compliance Requirements".

Read and accept them before using the product.

Limited warranty and Disclaimer

- 1. The warranty period of the product is 1 year in service or 1.5 years after the product is delivered, whichever is first.*2) Also, the product may have specified durability, running distance or replacement parts. Please consult your nearest sales branch.
- 2. For any failure or damage reported within the warranty period which is clearly our responsibility, a replacement product or necessary parts will be provided. This limited warranty applies only to our product independently, and not to any other damage incurred due to the failure of the product.
- 3. Prior to using SMC products, please read and understand the warranty terms and disclaimers noted in the specified catalog for the particular products.
 - *2) Suction cups (Vacuum pads) are excluded from this 1 year warranty. A suction cup (vacuum pad) is a consumable part, so it is warranted for a year after it is delivered.

Also, even within the warranty period, the wear of a product due to the use of the suction cup (vacuum pad) or failure due to the deterioration of rubber material are not allowed by the limited warranty.

Compliance Requirements

- 1. The use of SMC products with production equipment for the manufacture of weapons of mass destruction (WMD) or any other weapon is strictly prohibited.
- 2. The exports of SMC products or technology from one country to another are governed by the relevant security laws and regulations of the countries involved in the transaction. Prior to the shipment of a SMC product to another country, assure that all local rules governing that export are known and followed.

Revision History

- Edition B * A 270° rotating angle specification has been added. (Size: 20, 30)
 - Number of pages has been increased from 48 to 52.

- Edition C * A 270° rotating angle specification has been added. (Size: 10, 15, 40)
 - Number of pages has been increased from 52 to 56.

- Edition D * A double vane type has been added for sizes 10 to 40.
 - * Number of pages has been increased from 56 to 64.

↑ Safety Instructions Be sure to read the "Handling Precautions for SMC Products" (M-E03-3) and "Operation Manual" before use.

SMC Corporation