
Water Cooled Oil Cooler

Series HOW

FH□
HOW□

Series	Heat transfer area (Inside pipe)	Heat exchange	Flow rat	Daga	
Series	(m²) ` /	volume (kW)	Oil side	Cooling water side	Page
Oil Cooler: Iron particle type (Fixed pipe type) Series HOWF	0.077, 0.13, 0.21, 0.34 0.56, 0.83, 1.28	5.2 to 73	20 to 800	40 to 125	448
Oil Cooler: Copper particle type (Floating pipe type) Series HOW	0.084, 0.13, 0.21, 0.32 0.50, 0.75	6.0 to 52	20 to 400	25 to 100	453

Fixed Pipe Type Oil Cooler Series HOVF

Water Cooled: Iron Particle Type

High heat transfer coefficient through the effects of turbulence

The metal particles reliably generate turbulence by agitating the fluid, resulting in effective cooling without unevenness.

Compact design requiring less installation space

The compact design is only 1/2 to 1/5 the size of conventional oil coolers. Installation requires very little space.

Large heat transfer area

The metal particles firmly welded to the outer surface of the heat transfer pipes provide several times the heat transfer performance of fin tube configurations.

Flexible installation orientation

U-bolts are used to mount the oil cooler, providing plenty of flexibility with regard to the mounting orientation and method.

Simple structure

The baffle is also welded to a metal particle layer, a design that eliminates problems that previously tended to occur at the joins between the heat transfer pipes and baffles in conventional oil coolers.

Minimal pressure drop

The single-baffle structure increases the fluid path area, and the metal particles are 2 mm in diameter and pose no clogging danger.

Specifications

Max. operating pressure	(Oil and Water sides) 1.0 MPa
Proof pressure	(Oil and Water sides) 1.5 MPa
Fluid temperature	Oil side: Max. 100°C/Water side: Max. 50°C
Cooling water	Industrial water, Tap water
Fluid cooled	General petroleum-based hydraulic fluid, Lubricating oil, Non-flammable oil (water-glycol)
Heat transfer medium	Copper tube and iron particles (iron particles surface treated with copper alloy)
Connection Note)	Oil side: Threaded or Flange/Water side: Threaded

Note) Refer to "Dimensions". Threads conform to JIS B 0203 parallel female thread (oil side) and tapered female thread (water side). Flanges conform to JIS B 2220 (JIS 10K FF).

Model

	Heat transfer	Heat exchange	Oil side Note 3)	Cooling wa	ter side Note 2)	
Model	area (inside pipe) (m²)	volume Note 1) (kW)	Flow rate range (\ell/min)	Flow rate (e/min)	Pressure drop (MPa)	Mass (kg)
HOWF7-06	0.077	5.2	20 to 100	40	0.02	7
HOWF11-06	0.13	8.4	30 to 150	40	0.02	9
HOWF22-08	0.21	14	40 to 250	55	0.02	12
HOWF37-08	0.34	21	60 to 300	55	0.02	17
HOWF55-10	0.56	32	70 to 300	75	0.03	27
HOWF75-10	0.83	43	80 to 400	75	0.03	40
HOWF110-16	1.28	73	200 to 800	125	0.03	75

Note 1) Conditions: Turbine oil Class 1 (ISO VG32), oil outlet temperature 50°C, water inlet temperature 30°C

Note 2) Increasing the cooling water flow volume to greater than the rated flow volume will increase the heat transfer and provide better cooling, but should be avoided as the increased flow speed within the pipe can cause corrosion.

Note 3) Use an oil-side flow rate within the range indicated above. (The product cannot be used with flow rates exceeding this range.)

How to Order

HOWF 7 - 06

Oil side port size

06	Rc 3/4
08	Rc 1
10	1 1/4 ^B flange
16	2 ^B flange

Basic size (Equivalent hydraulic motor kW)

- Basis siz						
7	7.5					
11	11					
22	22					
37	37					
55	55					
75	75					
110	110					

Conditions In case of 55% heat loss of hydraulic motor kW
Oil outlet temperature 50°C

Water inlet temperature 30°C Turbine oil Class 1 (ISO VG32)

Water Cooled Oil Cooler / Iron Particle Type Series HOWF

Model Selection

To select the appropriate model for your application, use the data at right and follow the steps below.

Item		Fluid cooled	Cooling water	
Type (brand)		Turbine oil Class 1 (VG56)	1	
Flow rate		130 <i>ℓ</i> /min	(40) ℓ/min	
Townseroture	Inlet	_	25°C	
Temperature	Outlet	50°C —		
Heat exchang	e volume	15 kW		

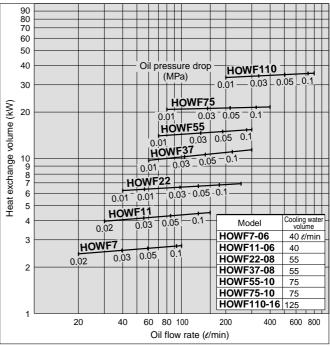
Step A: No Cooling Water Flow Rate Specified

- ⊕ From Data (A), calculate the oil type-heat volume correction coefficient.
 ← Example: A = 0.97
- From Data B, calculate the water temperature—heat volume correction coefficient.
- → Example: B = 1.3
- ③ Using the correction coefficients obtained in ① and ②, calculate the converted heat exchange volume.
 - Example: Q = $\frac{15}{0.97 \times 1.3}$ = 11.9 kV
- Select the appropriate model from the model performance graph.
 Example: Oil outlet temperature 50°C, selected model HOWF22 In this case, the oil pressure drop can be calculated as follows.
- (5) From the model performance graph, determine the oil pressure drop.
- → Example: △P = 0.04 MPa
- From Data ①, calculate the oil type–pressure drop correction coefficient.
- Example: D = 1.4
- ① Using ⑤ and ⑥, calculate the corrected oil pressure drop.
 - Example: △P = 0.4 x 1.4 = 0.056 MPa

(Result) Model: HOWF22, Oil pressure drop: △P = 0.056 MPa, Cooling water volume: 55 ℓ/min

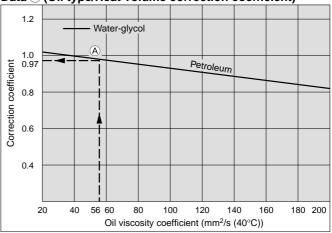
Step B: Cooling Water Flow Rate Specified

- ⊕ From Data (A), calculate the oil type—heat volume correction coefficient.

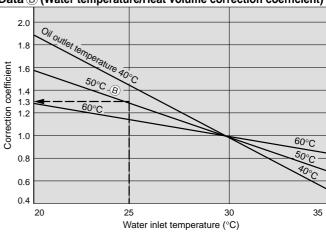

 ⊕ Example: A = 0.97
- From Data B, calculate the water temperature—heat volume correction coefficient.
- Example: B = 1.3
- 3 From the model performance graph, locate the intersection of the oil flow rate and heat exchange volume lines to make a provisional model selection. Note that the rated water volume for the selected model can be determined from the specifications.
- Oil outlet temperature 50°C, provisional model selection HOWF37, rated water volume 55 //min.
- (4) Divide the actual water volume by the rated water volume from (3). If the calculated water volume is 1 or greater, treat it as 1.
 - Example: $\frac{40}{55} = 0.72$
- ⑤ From Data ⓒ, calculate the water volume–heat volume correction coefficient.
 ↓ Example: C = 0.85
- 6 Using the correction coefficients obtained in ①, ②, and ⑤, calculate the converted heat exchange volume.
 - Example: $Q = \frac{15}{0.97 \times 1.3 \times 0.85} = 14 \text{ kW}$
- Select the appropriate model from the model performance graph.
 Example: Oil outlet temperature 50°C, selected model HOWF37
 In this case, the oil pressure drop can be calculated as follows.
- ® From the model performance graph, calculate the oil pressure drop.
 → Example: △P = 0.035 MPa
- From Data ①, calculate the oil type–pressure drop correction coefficient.
- Example: D = 1.4
- ① Using ⑧ and ⑨, calculate the corrected oil pressure drop.
 - Example: $\triangle P = 0.35 \times 1.4 = 0.049 \text{ MPa}$

(Result) Model: HOWF37, Oil pressure drop: △P = 0.049 MPa, Cooling water volume: 40 ℓ/min

Model Performance Graph (1): Oil Outlet Temperature 40°C


Conditions Oil outlet temperature: 40°C Water inlet temperature: 30°C

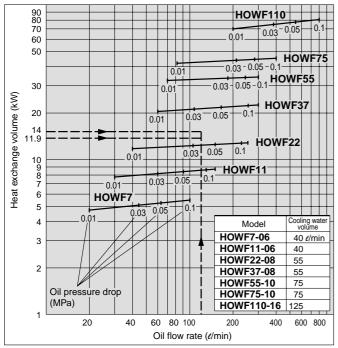
Fluid: Turbine oil Class 1 (ISO VG32)
Oil side pressure drop: 0.01, 0.03, 0.05, 0.1 MPa indicated



Model performance values include an allowance (approx. 25%) for water deposits.

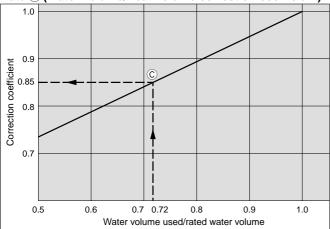
Data (A) (Oil type/Heat volume correction coefficient)

FH□

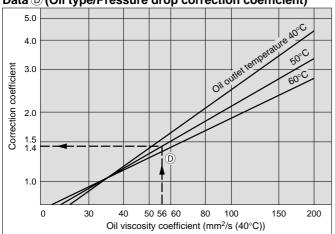

HOW_

Series HOWF

Model Performance Graph 2: Oil Outlet Temperature 50°C

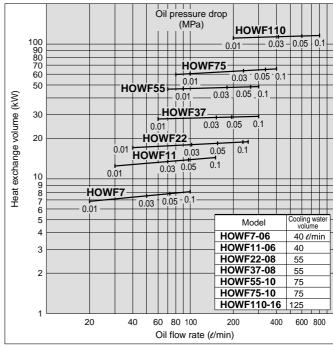

Conditions Oil outlet temperature: 50°C Water inlet temperature: 30°C

Fluid: Turbine oil Class 1 (ISO VG32)
Oil side pressure drop: 0.01, 0.03, 0.05, 0.1 MPa indicated

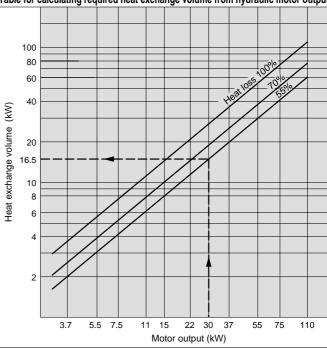


Model performance values include an allowance (approx. 25%) for water deposits.

Data © (Water volume/Heat volume correction coefficient)

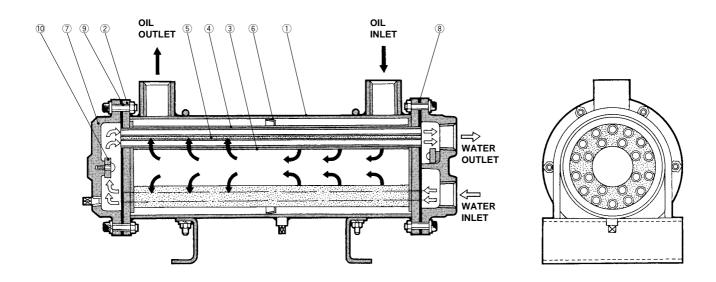

Data (D) (Oil type/Pressure drop correction coefficient)

Model Performance Graph (3): Oil Outlet Temperature 60°C


Conditions Oil outlet temperature: 60°C Water inlet temperature: 30°C

Fluid: Turbine oil Class 1 (ISO VG32)
Oil side pressure drop: 0.01, 0.03, 0.05, 0.1 MPa indicated

Model performance values include an allowance (approx. 25%) for water deposits.


Table for calculating required heat exchange volume from hydraulic motor output

Note) If the hydraulic pump motor output is 30 kW and the heat loss is 55%, the required conversion volume is 16.5 kW. (Select the heat loss percentage based on the hydraulic circuit.)

Water Cooled Oil Cooler / Iron Particle Type Series HOWF

Construction/Component Parts

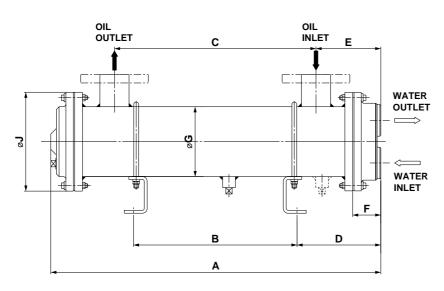
The series HOWF employs a multi-pipe design with the heat transfer pipes arranged in a circular pattern. The area between the pipes is filled with porous metal particles. Cooling water flows through the heat transfer pipes. Fluid flows in through the inlet on the side of the cooler and passes among the metal particles outside the heat transfer pipes, finally reaching the open cavity in the center. It then flows axially though the center cavity, once again passes among the metal particles, and flows out through the outlet. The cooling water inlet and outlet may be reversed, and the oil inlet and outlet may be reversed as well. It is not possible to switch the cooling water and oil flow paths, however.

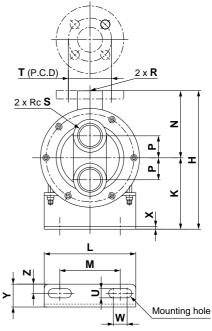
Component Part Materials

No.	Description	Material	Note
1	Body	STK	
2	Pipe plate A	SS400	
3	Metal particle cover	Stainless steel 304	
4	Heat transfer pipe	C1220T	
(5)	Metal particles	SS	Copper-plated
6	Baffle	Stainless steel 304	
7	Water chamber cover	FC200	

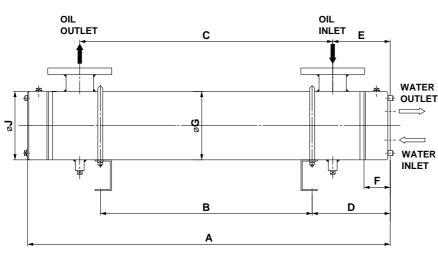
Component Parts

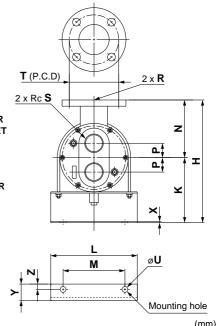
No.	8	9	10		
Description	Gasket A	Gasket B	Corrosion-resistant zinc		
Material	NBR	NBR	Zn		
Model	1	1	3		
HOWF7-06	D4754444	D4754440			
HOWF11-06	P1751411	P1751412			
HOWF22-08	D4754644	D4754640	D4754407		
HOWF37-08	P1751611	P1751612	P1751427		
HOWF55-10	D4754040	D4754044			
HOWF75-10	P1751810	P1751811			
HOWF110-16	P175126	P175127	P175067		





Series HOWF


Dimensions


HOWF7-06 to HOWF75-10

HOWF110-16

																(111111)
Model	Α	В	С	D	Е	F	øG	Н	øJ	K	L	M	N	Р	R	S
HOWF7-06	246	60	105	93	72	30	76	151	108	78	100	66	73	24	Rc3/4	3/4
HOWF11-06	361	175	220	95	72	30	76	151	108	78	100	66	73	24	Rc3/4	3/4
HOWF22-08	429	210	270	113	83	33	89	169	121	84	113	79	85	28	Rc1	1
HOWF37-08	639	420	480	113	83	33	89	169	121	84	113	79	85	28	Rc1	1
HOWF55-10	742	500	570	125	90	35	114	229	146	107	143	103	122	34	1 1/4 ^B flange	1 1/4
HOWF75-10	1057	815	885	125	90	35	114	229	146	107	143	103	122	34	1 1/4 ^B flange	1 1/4
HOWF110-16	1313	950	1050	189	139	64	165	298	166	158	210	150	140	35	2 ^B flange	1 1/2

Model	Т	J	W	Х	Υ	Z
HOWF7-06	_	10	15	3.2	25	10
HOWF11-06	_	10	15	3.2	25	10
HOWF22-08	_	10	15	3.2	25	10
HOWF37-08	_	10	15	3.2	25	10
HOWF55-10	100	12	13	3.2	30	12
HOWF75-10	100	12	13	3.2	30	12
HOWF110-16	120	ø14	_	7	40	13

Note) Threads conform to JIS B 0203 parallel female thread (oil side) and tapered female thread (water side). Flanges conform to JIS B 2220 (JIS 10K FF). B dimensions are maximum values. The HOWF7-06 only is equipped with a fluid drain plug directly below the OIL INLET. Since foot and U-bolts are not pre-mounted, they should be mounted during installation.

Floating Pipe Type Oil Cooler Series HOW

Water Cooled: Copper Particle Type

Large heat transfer area

The porous nature of the metal particles welded to the outer surface of the heat transfer pipes provide several times the heat transfer area of fin tube configurations.

High heat conductivity

The highly heat-conductive metal particles are firmly welded, so they provide effective cooling even when attached to a surface separated from the heat transfer pipes.

Compact design requiring less installation space

The compact design is only 1/2 to 1/5 the size of conventional oil coolers. Installation requires very little space.

High heat exchange effectiveness due to turbulence

The layer of metal particles reliably generates turbulence by agitating the fluid, resulting in effective cooling without unevenness.

Minimal pressure loss

The single-baffle structure increases the fluid path area. The metal particles are 2 mm in diameter, so they produce little pressure loss and will not create clogging that degrades performance.

Simple structure

The single baffle is welded to the metal particle layer for increased rigidity, a design that eliminates problems that previously tended to occur at the joins between the heat transfer pipes and baffles in conventional oil coolers.

Easy maintenance

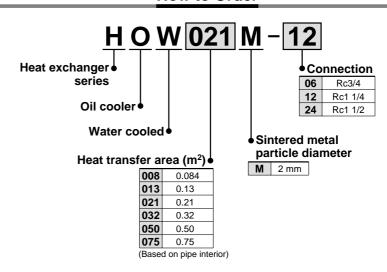
The floating pipe type makes interior cleaning and inspection easy. The compact pipe bundle makes for easy handling.

Specifications

•	
Max. operating pressure	(Oil and Water sides) 1.0 MPa
Proof pressure	(Oil and Water sides) 1.5 MPa
Fluid temperature	Oil side: Max. 100°C/Water side: Max. 50°C
Cooling water	Industrial water, Tap water
Fluid cooled	General petroleum-based hydraulic fluid, Lubricating oil Note 1)
Heat transfer medium	Copper tube and copper particles
Connection	Threaded Note 2)

Note 1) Not suitable for use with non-flammable fluid (water-glycol) or phosphoric ester hydraulic fluid. Note 2) Thread connection is standard for the oil side, but flange connection is possible using a (custom

Note 2) Thread connection is standard for the oil side, but flange connection is possible using a (custom) companion flange.


Model

Model	Heat transfer area (inside pipe) (m²)	Heat exchange volume (kW)	Oil side	Cooling water side		14
			Flow rate range (ℓ/min)	Flow rate (ℓ/min)	Pressure drop (MPa)	Mass (kg)
HOW008M-06	0.084	6	20 to 130	25	0.02	7
HOW013M-06	0.13	8.5	30 to 160	25	0.02	8
HOW021M-12	0.21	14	35 to 200	65	0.03	14
HOW032M-12	0.32	21	40 to 250	65	0.03	18
HOW050M-12	0.50	30	50 to 300	65	0.03	24
HOW075M-14	0.75	52	60 to 400	100	0.05	42

Note 1) Conditions: Turbine oil Class 1 (ISO VG32), oil outlet temperature 50°C, water inlet temperature 30°C

Note 2) Increasing the cooling water flow volume to greater than the rated flow volume will increase the heat transfer and provide better cooling, but should be avoided as the increased flow speed within the pipe can cause corrosion.

Series HOW

Model Selection

To select the appropriate model for your application, use the data at right and follow the steps below. (Note that Data (A) through Data (D) are listed in the series HOWF section.)

Item		Fluid cooled	Cooling water	
Type (brand)		Turbine oil Class 1 (VG56)	_	
Flow rate		130 ℓ/min	(47) ℓ/min	
	Inlet	_	25°C	
Temperature	Outlet	50°C	_	
Heat exchange volume		15 kW		

Step A: No Cooling Water Flow Rate Specified

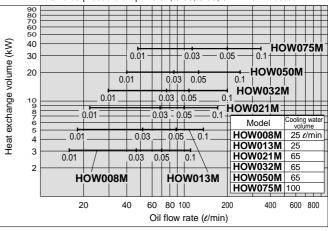
- ⊕ From Data ♠, calculate the oil type—heat volume correction coefficient.
 ← Example: A = 0.97
- ② From Data ③, calculate the water temperature–heat volume correction coefficient.
- → Example: B = 1.3
- ③ Using the correction coefficients obtained in ① and ②, calculate the converted heat exchange volume.
- -- Example: $Q = \frac{15}{0.97 \times 1.3} = 11.9 \text{ k}$
- ④ Select the appropriate model from the model performance graph. — Example: Oil outlet temperature 50°C, selected model HOW021M In this case, the oil pressure drop can be calculated as follows.
- (5) From the model performance graph, determine the oil pressure drop.
- Example: △P = 0.06 MPa
- Example: D = 1.4
- 7 Using 5 and 6, calculate the corrected oil pressure drop.
 - Example: \triangle P = 0.6 x 1.4 = 0.084 MPa

(Result) Model: HOW021M, Oil pressure drop: △P = 0.084 MPa, Rated water volume: 65 ℓ/min

Step B: Cooling Water Flow Rate Specified

- ⊕ From Data (a), calculate the oil type-heat volume correction coefficient.
 ← Example: A = 0.97
- ② From Data ③, calculate the water temperature–heat volume correction coefficient.
- Example: B = 1.3
- 3 From the model performance graph, locate the intersection of the oil flow rate and heat exchange volume lines to make a provisional model selection. Note that the rated water volume for the selected model can be determined from the specifications.
 - Oil outlet temperature 50°C, provisional model selection HOW021M, rated water volume 65 t/min.
- ④ Divide the actual water volume by the rated water volume from ③. If the calculated water volume is 1 or greater, treat it as 1.
 - Example: $\frac{47}{65}$ = 0.72
- § From Data ©, calculate the water volume–heat volume correction coefficient.
- Example: C = 0.85
- Using the correction coefficients obtained in ①, ②, and ⑤, calculate the converted heat exchange volume.
 - Example: Q = $\frac{15}{0.97 \times 1.3 \times 0.85}$ = 14 kW
- Select the appropriate model from the model performance graph.
 Example: Oil outlet temperature 50°C, selected model HOW021M In this case, the oil pressure drop can be calculated as follows.
- If this case, the on pressure drop can be calculated as follows.

 If the model performance graph, determine the oil pressure drop. Example: $\triangle P = 0.06 \text{ MPa}$
- From Data ①, calculate the oil type–pressure drop correction coefficient
- Example: D = 1.4
- 10 Using 8 and 9, calculate the corrected oil pressure drop.
- Example: $\triangle P = 0.6 \times 1.4 = 0.084 \text{ MPa}$

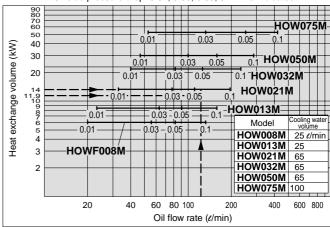

(Result) Model: HOW021M, Oil pressure drop: $\triangle P = 0.084$ MPa, Cooling water volume: 47 ℓ /min

Model Performance Graph (1): Oil Outlet Temperature 40°C

Conditions Oil outlet temperature: 40°C
Water inlet temperature: 30°C

Fluid: Turbine oil Class 1 (ISO VG32)

Oil side pressure drop: 0.01, 0.03, 0.05, 0.1 MPa indicated

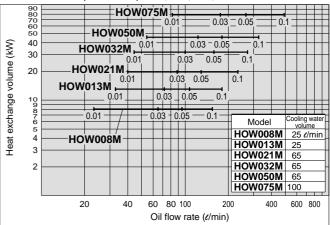


Model performance values include an allowance (approx. 25%) for water deposits.

Model Performance Graph 2: Oil Outlet Temperature 50°C

Conditions Oil outlet temperature: 50°C
Water inlet temperature: 30°C
Fluid: Turbine oil Class 1 (ISO VG32)

Oil side pressure drop: 0.01, 0.03, 0.05, 0.1 MPa indicated

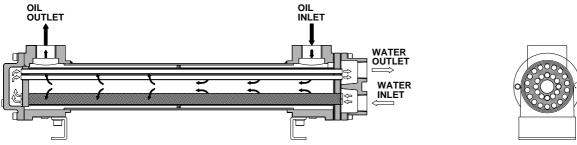


Model performance values include an allowance (approx. 25%) for water deposits.

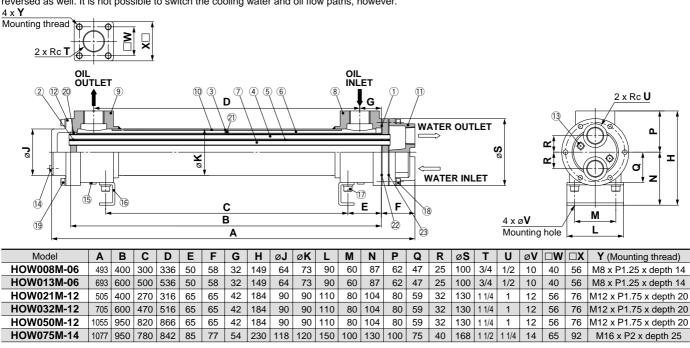
Model Performance Graph ③: Oil Outlet Temperature 60°C

Conditions Oil outlet temperature: 60°C
Water inlet temperature: 30°C
Fluid: Turbine oil Class 1 (ISO VG32)

Oil side pressure drop: 0.01, 0.03, 0.05, 0.1 MPa indicated



Model performance values include an allowance (approx. 25%) for water deposits.


Water Cooled Oil Cooler / Copper Particle Type Series HOW

Construction

Construction description

The series HOW employs a multi-pipe design with the heat transfer pipes arranged in a circular pattern. The area between the pipes is filled with porous metal particles. Cooling water flows through the heat transfer pipes. Fluid flows in through the inlet on the side of the shell and passes into the metal particle layer outside the heat transfer pipes, finally reaching the open cavity in the center. It then flows axially though the center cavity, once again passes through the metal particle layer, and flows out through the outlet. The cooling water inlet and outlet may be reversed, and the oil inlet and outlet may be reversed as well. It is not possible to switch the cooling water and oil flow paths, however.

Component Parts

Compon	omponent i arte					
No.	Description	Material	Quantity			
1	Tube sheet A	SS400	1			
2	Tube sheet B	SS400	1			
3	Baffle	SS400	1			
4	Heat transfer pipes	C1220T	_			
(5)	Metal particle layer	Cu	_			
6	Metal particle cover A	Stainless steel 304	2			
7	Metal particle cover B	Stainless steel 304	1			
8	Shell flange A	AC4C	1			
9	Shell flange B	AC4C	1			
10	Shell pipe	A6063T	1			
11)	Water chamber cover A	FC200	1			
12	Water chamber cover B	FC200	1			

No.	Description	Material	Quantity
13	Corrosion-resistant plug	Zn, FCMB	2
14	Water drain plug	FCMB	1
15	Oil drain plug	FCMB	2
16	Foot	SS400	2
17	Foot bolt	S20C	4
18	Cap bolt	SCM3	6
19	Cap bolt	SCM3	6
20	O-ring A	NBR	1
21)	O-ring B	NBR	1
22	Seal A	V#6500	1
23	Seal B	V#6500	1

If you are unsure which model is suitable, please refer to the items at right and contact SMC.

Application			
Heat exchange volume		kW	
Item		Fluid to be cooled	Cooling water
Type (brand)			
Flow rate		ℓ/min	∉/min
T	Inlet	°C	°C
Temperature	Outlet	°C	_
Allowable pressure drop		MPa	MPa
Max. operating pres	ssure	MPa N	
Property values	Weight volume ratio	kgf/cm ³	_
	Specific heat	kW/kg°C	_
	Viscosity	mm²/s	_
If hydraulic fluid, hydraulic motor output		kW	_

FH□

Series HOW/HOWF Specific Product Precautions

Be sure to read before handling. Refer to front matters 30 and 31 for Safety Instructions.

Design

⚠ Caution

- 1. Do not use at a pressure that exceeds the operating pressure range.
- 2. Do not use at a temperature that exceeds the operating temperature range.
- 3. Fluid

Do not use the product with gases.

4. Fatigue damage

Under the following conditions, special measures are required:

- 1) If the product will be subjected to pressure surges.
- If the product is not mounted securely and will be subject to friction or vibrations.

5. Corrosion

The product may corrode depending on usage conditions and environment.

Selection

△ Warning

- When selecting products, carefully consider the usage purpose, the required specifications, and the usage conditions (fluid, pressure, flow rate, temperature, environment), and ensure that the specification range is not exceeded.
- 2. The fluid used must not be heated to the boiling point.
- 3. Do not use the product with air or other gases under any circumstances.
- 4. Do not use the product in circumstances where it will be exposed to pressure that exceeds 1 MPa, such as with a water hammer or surge pressure.

Fluid

⚠ Warning

- Use tap water or industrial water as cooling water.
 Do not use seawater.
- 2. Do not use for cooling chemicals or food products.

Piping

∧ Caution

1. Make sure to allow sufficient space for maintenance when installing and piping.

2. Connections

Make sure no cutting chips from pipe threads or sealing material gets inside the piping. If sealant tape is used, leave 1.5 to 2 thread ridges exposed at the end of the male thread.

3. Filter installation

Install #100 µm filters into the inlet pipes of the oil cooler on both the oil and cooling water sides.

4. The cooling water inlet and outlet may be reversed, and the oil inlet and outlet may be reversed as well. It is not possible to switch the cooling water and oil flow paths, however.

Operating Environment

⚠ Caution

- 1. If the product is used in an environment or location conducive to corrosion, discoloration or deterioration due to corrosion may occur.
- 2. Fatigue damage may occur if the product is used in a location subject to vibrations or impacts.

Maintenance

⚠ Caution

1. Wash out the cooling water side once a year.