

Pneumatic Instrumentation Equipment

Index

Filter Regulator	0
Precision Regulator	3
Valve Positioner	6
Cylinder Positioner	7
Dual Positioner	9
Pressure Switch	0
Booster Relay	13
Lock-Up Valve	15

Pneumatic Instrumentation Equipment


Filter regulator

Precision regulator

Valve positioner

Cylinder positioner

Dual positioner

Booster relay

Lock-up valve

Pressure switch

Filter Regulator Series 1301, IW

Prevents moisture and dust in the compressed air line while maintaining pressure at a stable level, in spite of variations of both air consumption and air source pressure.

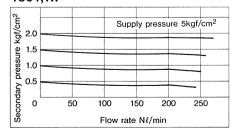
Specifications

Series	1301	i sylw	
Supply pressure	Max.9.9kgf/cm ²	Max.9.9kgf/cm ²	
Flow rate 1)	300Nℓ/min	·400Nℓ/min	
Air consumption 2)	6N l/min or less 3)	1Nℓ/min or less	
Ambient and fluid temperature	−5 ~60°C	−5 ~60°C	
Filtration	5 <i>μ</i> m	5μm	
Port size (Gauge port)	1/4 (1/8)	1/4 (1/4)	
Weight	1.07kgf	0.7kgf	
Body material	Zinc alloy	Alminum alloy	

- 1) At 5kgf/cm² of supply pressure.
- 2) At Max. set pressure.
- 3) For 1301-002.

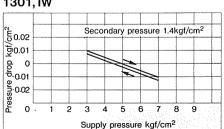
Model

Model	Set pressure	Note
1301-002	0.2~2kgf/cm ²	Standard
1301-902	0.2~2kgf/cm²	External main parts: Stainless steel
1301-1202	0.2~3kgf/cm ²	
1301-2502	0.2~5kgf/cm ²	
IW212-02	0.2~2kgf/cm²	
IW213-02	0.2~3kgf/cm ²	
IW215-02	0.2~5kgf/cm ²	

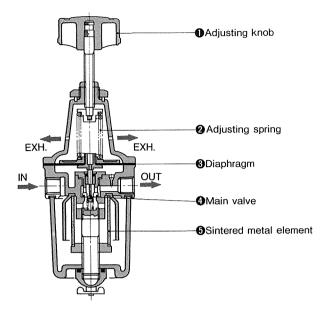

Options

Description	Part No.	Note
Bracket	130184	
	G51-2*	2kgf/cm ²
Pressure gauge	G51-4*	4kgf/cm ²
	G51-7*	7kgf/cm ²

#Please specify port size;01($\frac{1}{8}$) for series 1301, or 02($\frac{1}{4}$) for series IW.

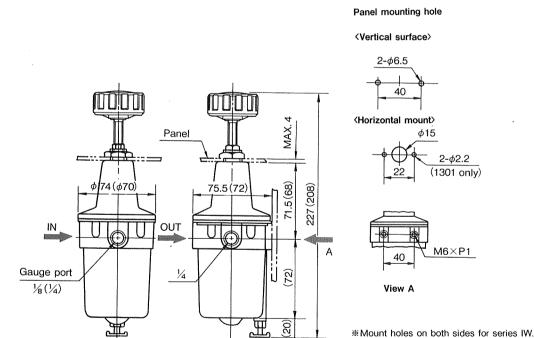

Flow Characteristics

1301,IW


Pressure Characteristics

1301, IW

Series 1301, IW


Construction

Operation

Air flow from the inlet passes through element where solids are removed. When adjusting knob is adjusted downwards, adjusting spring is compressed. The main valve is opened allowing air flow to the outlet. Air outlet pressure balances against diaphragm and adjusting spring when the outlet pressure is higher than the set pressure, the main valve is closed and exhaust of the excess outlet pressure takes place through the adjusting spring cover bleed. This ensures constant outlet pressure is maintained.

Dimensions (mm)

() series IW.

SMC Precision Regulator Series IR 200

High sensitivity, excellent pressure and flow characteristics.

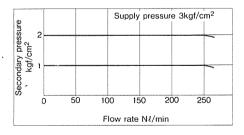
Designed for a degree of accuracy beyond the scope of standard regulators.

Suitable for applications requiring extremely precise pressure control.

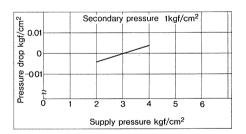
Specifications	
Supply pressure	Max.7kgf/cm ^{2 1)}
Flow rate	400Nℓ/min²)
Air consumption ³⁾	3Nℓ/min or less⁴)
Sensitivity	0.001~0.005kgf/cm ²
Ambient and fluid temperature	−5~60°C.
Port size	1/4 (Gauge port 1/8)
Woight	290af

1) Max. 9.9kgf/cm² for IR202-02. 2) At 5kgf/cm² of supply pressure.

3) Air consumption is due to exhaust from nozzle. 4) At 7kgf/cm² of supply pressure.

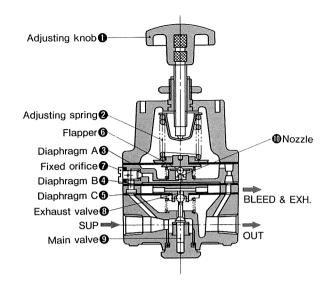

Model

Model	Set pressure	
IR200-02	0.05~2kgf/cm ²	
IR201-02	0.05~4kgf/cm²	
IR202-02	0.05~7kgf/cm ²	

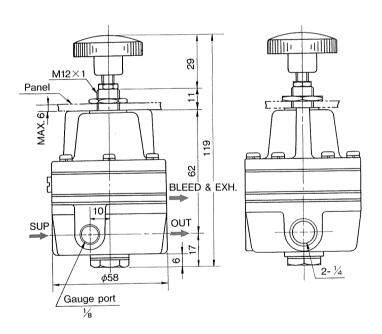

Options

Description	Part No.	Note
Bracket	230451	
Pressure gauge	G43- 2 -01	2kgf/cm ²
	G43- 4 -01	4kgf/cm ²
	G43-10-01	10kgf/cm ²

Flow Characteristics



Pressure Characteristics


Series IR200

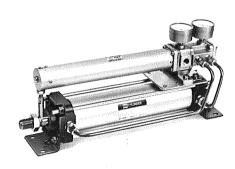
Construction

Operation

When knob ① is turned downwards movement of adjusting spring ② and diaphragm A ③ closes nozzle ①. Air flow from fixed orifice ② causes a back pressure of nozzle ① which acts on diaphragm B ②. This causes downward movement of main valve ②. Supply pressure can then flow to secondary supply. Pressure on diaphragm C ③ results in upward balancing movement of diaphragm B ④ and then A ③ against the spring force. When the secondary pressure increases, diaphragm A ⑥ is pushed upwards causing clearance between the flapper ⑥ and nozzle ⑩. Back pressure before nozzle is lowered. The imbalance of diaphragms B and C gloses main valve ④ and opens exhaust allowing vent of excess pressure through exhaust valve ③. The above combination ensures high sensitivity and precision regulation of the secondary supply.

Panel mounting hole

SMC Cylinder Positioner Series IP200

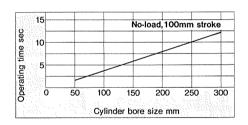

Easy to operate and mount.

For precise and stable position control of small bore cylinder.

Compact size.

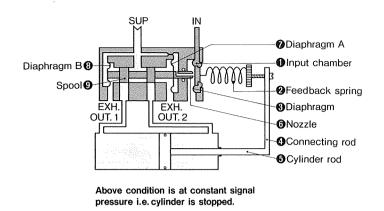
Can be used as cylinder position control.

Unit for process control, servomechanism, and general industrial machines.


Specifications		
Supply pressure	3∼7kgf/cm²	
Signal pressure	0.2~1.0kgf/cm ²	
Cylinder bore	50~300mm	
Cylinder stroke	25~300mm	
Ambient and fluid temperature	−5~60°C	
Port size	1/4 (Gauge port 1/8)	
Weight	700gf	
Sensitivity	Within 0.5% of full span	
Linearity	Within $\pm 2\%$ of full stroke	
Hysteresis	Within 1% of full stroke	
Repeatability	Within 1% of full stroke	
Air consumption*	22Nℓ/min or less**	
Influence by change in supply pressure	Within 1%/0.5kgf/cm ²	

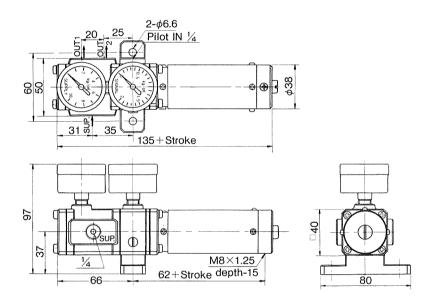
*Air consumption is due to exhaust from nozzle.

※


※ At 5kgf/cm² of supply pressure.

Response time

Series IP200


Construction

Operation

When signal pressure enters input chamber **1** the diaphragm B **3** is deflected left. Clearance of the nozzle **3** is reduced causing higher back pressure at diaphragm A **3**.

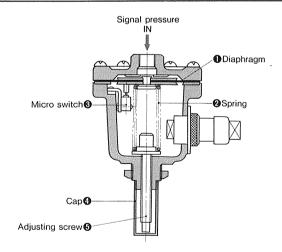
This diaphragm A ② has larger area than diaphragm B ③ resulting in movement of the spool to the left. Supply pressure then flows to OUT 1 ① and partial exhaust from OUT 2 takes place resulting in cylinder rod ⑤ movement to the right. The movement is linked via rod ⑥ and feedback spring ② to the input diaphragm ⑥ balancing the higher pressure. When this occurs nozzle ⑥ clearance increases allowing centralizing of the spool ① to take place. This holds the piston rod in the new position. Input signal increase results in proportional movement of the piston rod.

SMC Pressure Switch Series IS

Receives an input of 0.2 to 1 kgf/cm² and transmits an electric output at the set point.

Can be used for pneumatic instrument process control with a combined function of controller and telemeter.

High performance.


Can be mounted in any position. Compact and light weight.

Specifications	
Set pressure range	0.2~1kgf/cm ²
Differential	Within 12mm Hg (Fixed)
Ambient and fluid temperature	−5~60°C
Contact	N.O. or N.C.2 contacts
Capacity	AC125/250V5A, DC30V5A
-Connection	1/4

Model			
Model IS100-02		Electrical connection 3-pin plug and socket (Std).	
-48, 2-d-	IS101-02J	External terminal and fitting on inlet	
1,8 7,1	IS112-02	Enclosed terminals (Wire through bushing)	
	IS113-02	Enclosed terminals (Cable glands for electric appliance)	
100000000000000000000000000000000000000	IS114-02	Enclosed terminals (Conduit entry)	

Construction

Operation

Signal pressure enters the chamber above diaphragm ① and exerts downward force compressing spring ②. After sufficient deflection, contact with the plunger of the micro switch ③ is made operating the electrical circuit. As overtravel of diaphragm is prevented by an internal stop the micro switch is not subject to

extra load with increased pressure.
On decrease of signal pressure the electrical circuit function is reversed.
Contacts are available for N.C. or N.O. operation. Adjustment is carried out by removing cap 4 and rotating adjusting screw as required changing spring load.

Series IS

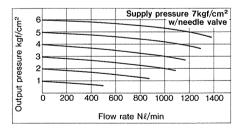
SMC Booster Relay Series IL100

Used when the piping between instrumentation and operational area is long, or when operational area has large capacity.

Can help accelerate actuation speed considerably.

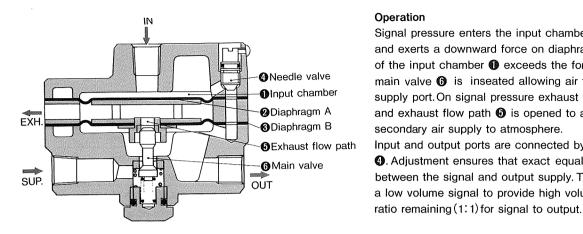
Supply pressure	Max. 9.9kgf/cm ²
Signal pressure	Max. 7kgf/cm²
Output pressure	Max. 7kgf/cm²
Flow rate	600N l/min */
Air consumption	3Nℓ/min or less**
Linearity	Within \pm 1%
Hysteresis	Within 1%
Cv factor	1.1
Pressure ratio	1:1
Ambient and fluid temperature	-5~60°C
Port size	1/4, 3/8
Weight	560gf

At 5kgf/cm² of supply pressure.
At 1kgf/cm² of output pressure.

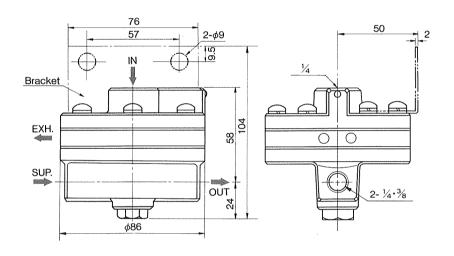

Model

Model	Š.,	Port size
IL100-02		1/4
IL100-03		3/8

Option


	Description	Part No		
	Bracket	261022		

Flow Characteristics


Series IL100

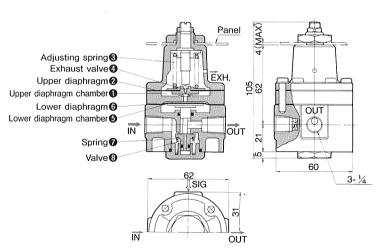
Construction

Operation

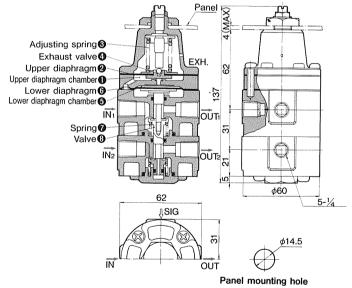
Signal pressure enters the input chamber 1 and diaphragm A 2 and exerts a downward force on diaphragm B 3. When the force of the input chamber 10 exceeds the force of diaphragm B 13. main valve 6 is inseated allowing air flow out the secondary supply port. On signal pressure exhaust the supply valve closes and exhaust flow path 6 is opened to allow vent of the secondary air supply to atmosphere. Input and output ports are connected by a needle valve 4. Adjustment ensures that exact equalization occurs between the signal and output supply. The above function allows a low volume signal to provide high volume output with pressure

SMC Lock-Up Valve Series IL200

When accident takes place on air operated process control line due to air source or air supply piping line, lock-up valve retains pressure at the tool end until restored to normal condition.



pecifications				
Proof pressure	Max.9.9kgf/cm ²			
Signal pressure	1.4~7kgf/cm²			
Line pressure	Max. 7kgf/cm²			
Effective orifice(Cv)	17mm² (0.9)			
Ambient and fluid temperature	−5 ~60°C			
Connections	1/4			
Hysterisis	Within 0.1 kgf/cm ²			


Model				
Model	Weight	Note		
IL201-02	430gf	Single acting		
IL211-02	640gf	Double acting		

Construction/Dimensions (mm)

Single Acting/IL201

Double Acting/IL211

Operation

Safe signal pressure enters the upper diaphragm chamber ① and compresses the adjusting spring ③ and moves the upper diaphragm ② upward. It also closes the exhaust valve ④. Signal pressure also enters the lower diaphragm chamber ⑤ and exerts a downward force on the valve ⑤. This opens the flow path from 'IN' and 'OUT' ports for flow in either direction.

When malfunction in the control signal circuit occurs pressure holding the lower diaphragm downwards is lost through the exhaust valve ①. Valve ② closes with spring return and the circuit is sealed. For double acting lock-up valve above operation is extended by an extra valve movement allow two separate circuits to be protected.

Series IL200

Precautions

- Blow out air lines and fittings before installation.
- ●Use dry and oil-free air. Recommend use of SMC AM Mist Separator.