For product specifications such as maximum operating pressure differentials and operating temperature ranges, refer to the relevent pages of each product.

Air, Inert gas

								Applicable	e port size						Flange		
Fluid	Action	Series	Remarks	_	6A	8A	10A	15A	20A	25A	32A	40A	50A	32F	40F	50F	Page
				M5	1/8	1/4	3/8	1/2	3/4	1	1 1/4	1 1/2	2	32F	40F	SUF	
		VDW		•	•	•											P.241
		VCA			•	•	•	•	•								P.317
	Direct operated	VX2			•	•	•	•									P.29
		VXE	Only low wattage, DC type		•	•	•	•									P.93
		VX3			•	•	•	•									P.179
Air, Inert gas		VXD				•	•	•	•	•				•	•	•	P.59
	Dilatananatad	VXZ	Zero pressure differential operation			•		•	•	•							P.77
	Pilot operated	VXP				•		•	•	•	•	•	•	•	•	•	P.145
		VQ20/30	For dry air, built-in One-touch Fittings					ø6, ø8, ø	ø10, ø12								P.267
	External pilot pietes	VNA			•	•	•	•	•	•	•	•	•				P.357
	External pilot piston	VNB			•	•	•	•	•	•	•	•	•	•	•	•	P.365

Series VXP

Series VNA

Vacuum

2

									Applicabl	e port size						Flange		
FI	uid	Action	Series	Remarks	_	6A	8A	10A	15A	20A	25A	32A	40A	50A	32F	40F	50F	Page
					M5	1/8	1/4	3/8	1/2	3/4	1	1 1/4	1 1/2	2	32F	40F	50F	
			VDW		•	•	•											P.241
	Low vacuum	Direct operated	VX2			•	•	•	•									P.29
			VX3, VXV3			•	•	•										P.179
			VX2	Option: V, M		•	•	•	•									P.29
Vacuum	Medium	Direct operated	VCW	Made to Order available		•	•	•	•	•								P.345
Vacuum	vacuum		VX3	Option: V, M			•	•										P.196
		External pilot piston	VNB			•	•	•	•	•	•	•	•	•	•	•	•	P.365
	111 1-		XL					Vacuum K	F: 16, 25, 4	0, 50, 63, 8	0; K: 63, 80							Best
	High vacuum	External pilot piston	XM, XY					Vacuum K	F: 16, 25, 4	0, 50, 63, 8	0; K: 63, 80							Pneumatics
			XVD	Flow rate adjustment				For \	/CR: 1/4; Fo	or swage loc	k: 1/4							No. 8

SMC

For product specifications such as maximum operating pressure differentials and operating temperature ranges, refer to the relevent pages of each product.

Water

								Applicable	e port size						Flange		
Fluid	Action	Series	Remarks	_	6A	8A	10A	15A	20A	25A	32A	40A	50A	32F	40F	50F	Page
				M5	1/8	1/4	3/8	1/2	3/4	1	1 1/4	1 1/2	2	32F	40F	50F	
		VDW		•	•	•											P.241
		VX2			•	•	•	•									P.29
	Direct operated	VXE	Only low wattage, DC type		•	•	•	•									P.93
	Direct operated	VX3			•	•	•										P.179
		VCW			•	•	•	•	•								P.345
Water		VCB			•	•	•	•	•								P.329
Water		VXD				•	•	•	•	•				•	•	•	P.59
		VXZ	Zero pressure differential operation			•	•	•	•	•							P.77
	Pilot operated	VXP				•	•	•	•	•	•	•	•	•	•	•	P.145
		VXR	Water hammer relief				•	•	•	•	•	•	•				P.157
		VXH	Only AC type, 2 MPa			•	•	•									P.167
	External pilot piston	VNB			•	•	•	•	•	•	•	•	•	•	•	•	P.365

Heated water

								Applicable	e port size						Flange		
Fluid	Action	Series	Remarks	_	6A	8A	10A	15A	20A	25A	32A	40A	50A	32F	40F	50F	Page
				M5	1/8	1/4	3/8	1/2	3/4	1	1 1/4	1 1/2	2	32F	40F	DUF	
		VX2	Option: E, P		•	•											P.29
	Direct operated	VX3	Option: E, P		•	•	•										P.179
		VCB			•	•	•	•	•								P.329
Heated water		VXD	Option: E, P			•	•	•	•	•				•	•	•	P.59
neated water	Dilet en evete d	VXZ	Zero pressure differential operation, Option: E, P			•	•	•	•	•							P.77
	Pilot operated	VXP	Option: E, P			•	•	•	•	•	•	•	•	•	•	•	P.145
		VXR	Water hammer relief, Option: D					•	•	•	•	•	•				P.157
	External pilot piston	VNB			•	•	•	•	•	•	•	•	•	•	•	•	P.365

Series VX2

Series VXE

Series VCW

Series VCB

Series VXD

Series VXZ

Series VXP

Series VXR

Series VXH

Series VNB

For product specifications such as maximum operating pressure differentials and operating temperature ranges, refer to the relevent pages of each product.

Oil

								Applicable	e port size						Flange		
Fluid	Action	Series	Remarks	_	6A	8A	10A	15A	20A	25A	32A	40A	50A	32F	40F	50F	Page
				M5	1/8	1/4	3/8	1/2	3/4	1	1 1/4	1 1/2	2	32F	40F	50F	
		VDW	Option: A, H	•	•	•											P.241
		VX2	Option: A, D, H, N		•	•	•	•									P.29
	Direct operated	VXE	Only low wattage, DC type, Option: A, H		•	•	•	•									P.93
		VX3	Option: A, D, H, N		•	•	•										P.179
		VCL			•	•	•	•	•								P.333
Oil		VXH	Only AC type, 1.5 MPa or less			•	•	•									P.167
011		VXD	Option: A, D, H, N			•	•	•	•	•				•	•	•	P.59
	Pilot operated	VXZ	Zero pressure differential operation, Option: A, D, H, N			•	•	•	•	•							P.77
		VXP	Option: A, D, H, N			•	•	•	•	•	•	•	•		•	•	P.145
		VXR	Water hammer relief, Option: A, D				•	•	•	•	•	•	•				P.157
	External pilot piston	VNA			•	•	•	•	•	•	•	•	•				P.357
	External pilot pistori	VNB			•	•	•	•	•	•	•	•	•	•	•	•	P.365

Steam

								Applicable	e port size						Flange		
Fluid	Action	Series	Remarks	_	6A	8A	10A	15A	20A	25A	32A	40A	50A	32F	40F	50F	Page
				M5	1/8	1/4	3/8	1/2	3/4	1	1 1/4	1 1/2	2	32F	40F	DUF	
		VCS			•	•	•	•	•								P.339
	Direct operated	VX2	Option: S, Q		•	•	•	•									P.29
Steam		VX3	Option: S, Q		•	•	•										P.179
	Pilot operated	VXP	Option: S			•	•	•	•	•	•	•	•	•	•	•	P.145
	External pilot piston	VND				•	•	•	•	•	•	•	•	•	•	•	P.415

SMC

Series VX2

Series VXH

Series VXD

Series VND

Series VXR

Series VNA

Series VCS

For product specifications such as maximum operating pressure differentials and operating temperature ranges, refer to the relevent pages of each product.

High pressure compressed air

								Applicable	port size						Flange		
Fluid	Action	Series	Remarks	_	6A	8A	10A	15A	20A	25A	32A	40A	50A	225	40F	FOE	Page
				M5	1/8	1/4	3/8	1/2	3/4	1	1 1/4	1 1/2	2	32F	406	50F	
	Direct operated	VX2	3 MPa or less		•												P.29
High pressure	Direct operated	VXE	Only low wattage, DC type, 3 MPa or less		•												P.93
compressed -	Dilat aparatad	VXH	Only AC type, 2 MPa or less			•	•	•									P.167
	Pilot operated	VCH4	Only G thread type, 5 MPa or less							•*	●*						P.227

^{*} Only G thread type

Coolant

								Applicable	port size							Flange			
Fluid	Action	Series	Remarks	_	6A	8A	10A	15A	20A	25A	32A	40A	50A	225	40F	50F	GE A	80A	Page
				M5	1/8	1/4	3/8	1/2	3/4	1	1 1/4	1 1/2	2	32F	40F	50F	65A	8UA	
		SGC					•	•	•	•									P.373
Coolant	External pilot piston	VNC			•	•	•	•	•	•	•	•	•	•	•	•	•	•	P.399
		VNH					•	•	•	•									P.409

Series VXE

Series VXH

Series VCH4

Series **SGC**

Series VNH

Chemicals, Pure water

								Applicable	port size						Flange		
Fluid	Action	Series	Remarks	_	6A	8A	10A	15A	20A	25A	32A	40A	50A	225	405	FOF	Page
				M5	1/8	1/4	3/8	1/2	3/4	1	1 1/4	1 1/2	2	32F	40F	50F	
Chemicals,	Pilot	LV	Female thread type, with fittings type available		•	•	•	•	•	•							P.457
Pure water	Direct operated	LVM	With fittings type, female thread type available	•*													P.281

^{*} Body ported: M5; Base mounted: M6

Dust collector

								Applicable	port size						Flange		
Fluid	Action	Series	Remarks	_	6A	8A	10A	15A	20A	25A	32A	40A	50A	205	405	50E	Page
				M5	1/8	1/4	3/8	1/2	3/4	1	1 1/4	1 1/2	2	32F	40F	50F	
Dust collector	Pilot operated	VXF	Dedicated for dust collector						•	•	•	•					P.169

Series LVM

Series VXF

SMC

(How to indicate flow characteristics)

1. Indication of flow characteristics

The flow characteristics in equipment such as a solenoid valve, etc. are indicated in their specifications as shown in Table (1).

Table (1) Indication of Flow Characteristics

Corresponding equipment	Indication by international standard	Other indications	Conformed standard
Do assessation	<i>C</i> , <i>b</i>	_	ISO 6358: 1989 JIS B 8390: 2000
Pneumatic equipment	_	S	JIS B 8390: 2000 Equipment: JIS B 8373, 8374, 8375, 8379, 8381
		Cv	ANSI/(NFPA)T3.21.3: 1990
Process fluid control	Av	_	IEC60534-2-3: 1997 JIS B 2005: 1995
equipment	_	Cv	Equipment: JIS B 8471, 8472, 8473

2. Pneumatic equipment

2.1 Indication according to the international standards

- (1) Conformed standard
 - ISO 6358: 1989 : Pneumatic fluid power—Components using compressible fluids—
 - Determination of flow-rate characteristics
 - JIS B 8390: 2000 : Pneumatic fluid power—Components using compressible fluids—
 - How to test flow-rate characteristics
- (2) Definition of flow characteristics
 - The flow characteristics are indicated as a result of a comparison between sonic conductance \boldsymbol{C} and critical pressure ratio \boldsymbol{b} .
 - Sonic conductance **C**: Value which divides the passing mass flow rate of an equipment in a choked flow condition by the product of the upstream absolute pressure and the density in a
 - standard condition.
 - Critical pressure ratio **b**: Pressure ratio (downstream pressure/upstream pressure) which will turn to a choked
 - flow when the value is smaller than this ratio.
 - Choked flow : The flow in which the upstream pressure is higher than the downstream pressure and
 - where sonic speed in a certain part of an equipment is reached.
 - Gaseous mass flow rate is in proportion to the upstream pressure and not dependent
 - on the downstream pressure.
 - Subsonic flow : Flow greater than the critical pressure ratio
 - Standard condition : Air in a temperature state of 20°C, absolute pressure 0.1 MPa (= 100 kPa = 1 bar),
 - relative humidity 65%.
 - It is stipulated by adding the "(ANR)" after the unit depicting air volume.
 - (standard reference atmosphere)
 - Conformed standard: ISO 8778: 1990 Pneumatic fluid power—Standard reference atmosphere, JIS B 8393: 2000: Pneumatic fluid power—Standard reference atmosphere
- (3) Formula for flow rate
 - It is described by the practical units as following.

$$\frac{{{m P}_{2}}+0.1}{{{m P}_{1}}+0.1} \le {m b}, \ {
m choked flow}$$

$$Q = 600 \times C (P_1 + 0.1) \sqrt{\frac{293}{273 + t}}$$
(1)

When

$$\frac{{\bf P}_{2}+0.1}{{\bf P}_{1}+0.1}>{\bf b}$$
, subsonic flow

$$\mathbf{Q} = 600 \times \mathbf{C} (\mathbf{P}_1 + 0.1) \sqrt{1 - \left[\frac{\mathbf{P}_2 + 0.1}{\mathbf{P}_1 + 0.1} - \mathbf{b} \right]^2 \sqrt{\frac{293}{273 + \mathbf{t}}}}$$
 (2)

Q: Air flow rate [dm³/min (ANR)], dm³ (Cubic decimeter) of SI unit are also allowed to be described by ℓ (liter). 1 dm³ = 1 ℓ

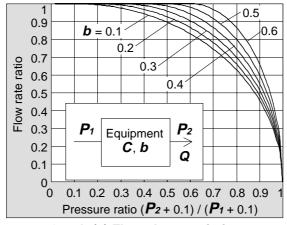
C: Sonic conductance [dm³/(s·bar)]

b : Critical pressure ratio [—]
P₁ : Upstream pressure [MPa]
P₂ : Downstream pressure [MPa]

t : Temperature [°C]

Note) Formula of subsonic flow is the elliptic analogous curve.

Flow characteristics are shown in Graph (1) For details, please make use of SMC's "Energy Saving Program".


Example)

Obtain the air flow rate for $P_1 = 0.4$ [MPa], $P_2 = 0.3$ [MPa], t = 20 [°C] when a solenoid valve is performed in C = 2 [dm³/(s·bar)] and b = 0.3.

According to formula 1, the maximum flow rate = $600 \times 2 \times (0.4 + 0.1) \times \sqrt{\frac{293}{273 + 20}} = 600 \text{ [dm}^3/\text{min (ANR)]}$

Pressure ratio =
$$\frac{0.3 + 0.1}{0.4 + 0.1} = 0.8$$

Based on Graph (1), it is going to be 0.7 if it is read by the pressure ratio as 0.8 and the flow ratio to be $\boldsymbol{b} = 0.3$. Hence, flow rate = Max. flow x flow ratio = 600 x 0.7 = 420 [dm³/min (ANR)]

Graph (1) Flow characteristics

(4) Test method

Attach a test equipment with the test circuit shown in Fig. (1) while maintaining the upstream pressure to a certain level which does not go below 0.3 MPa. Next, measure the maximum flow to be saturated in the first place, then measure this flow rate at 80%, 60%, 40%, 20% and the upstream and downstream pressure. And then, obtain the sonic conductance \boldsymbol{C} from this maximum flow rate. Besides that, substitute each data of others for the subsonic flow formula to find \boldsymbol{b} , then obtain the critical pressure ratio \boldsymbol{b} from that average.

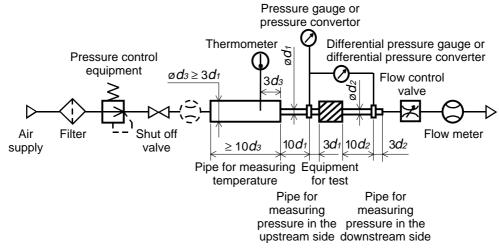


Fig. (1) Test circuit based on ISO 6358, JIS B 8390

2.2 Effective area S

(1) Conformed standard

JIS B 8390: 2000: Pneumatic fluid power—Components using compressible fluids—

Determination of flow rate characteristics

Equipment standards: JIS B 8373: 2 port solenoid valve for pneumatics

JIS B 8374: 3 port solenoid valve for pneumatics

JIS B 8375: 4 port, 5 port solenoid valve for pneumatics

JIS B 8379: Silencer for pneumatics

JIS B 8381: Fittings of flexible joint for pneumatics

(2) Definition of flow characteristics

Effective area **S**: The cross-sectional area having an ideal throttle without friction deduced from the calculation of the pressure changes inside an air tank or without reduced flow when discharging the compressed air in a choked flow, from an equipment attached to the air tank. This is the same concept representing the "easy to run through" as sonic conductance C.

(3) Formula for flow rate

When

$$\frac{P_2 + 0.1}{P_1 + 0.1} \le 0.5$$
, choked flow

$$\mathbf{Q} = 120 \times \mathbf{S} (\mathbf{P}_1 + 0.1) \sqrt{\frac{293}{273 + \mathbf{t}}}$$
 (3)

When

$$\frac{P_{2} + 0.1}{P_{1} + 0.1} > 0.5$$
, subsonic flow

$$Q = 240 \times S \sqrt{(P_2 + 0.1)(P_1 - P_2)} \sqrt{\frac{293}{273 + t}}$$
(4)

Conversion with sonic conductance **C**:

 $S = 5.0 \times C$ (5)

Q: Air flow rate[dm³/min(ANR)], dm³ (cubic decimeter) of SI unit are also allowed to be described by ℓ (liter) 1 $dm^3 = 1 \ell$

S: Effective area [mm²]

P1: Upstream pressure [MPa]

P2: Downstream pressure [MPa]

t : Temperature [°C]

Note) Formula for subsonic flow (4) is only applicable when the critical pressure ratio \boldsymbol{b} is the unknown equipment. In the formula (2) by the sonic conductance \boldsymbol{C} , it is the same formula as when $\boldsymbol{b} = 0.5$.

(4) Test method

Attach a test equipment with the test circuit shown in Fig. (2) in order to discharge air into the atmosphere until the pressure inside the air tank goes down to 0.25 MPa (0.2 MPa) from an air tank filled with the compressed air at a certain pressure level (0.5 MPa) which does not go below 0.6 MPa. At this time, measure the discharging time and the residual pressure inside the air tank which had been left until it turned to be the normal values to determine the effective area S, using the following formula. The volume of an air tank should be selected within the specified range by corresponding to the effective area of an equipment for test. In the case of JIS B 8373, 8374, 8375, 8379, 8381, the pressure values are in parentheses and the coefficient of the formula is 12.9.

 $S = 12.1 \frac{V}{t} \log_{10} \left(\frac{Ps + 0.1}{P + 0.1} \right) \sqrt{\frac{293}{T}} \dots (6)$ Power supply Pressure switch Thermometer S: Effective area [mm²] Solenoid Contro Pressure control V: Air tank capacity [dm3] valve lo equipment Equipment t : Discharging time [s] for test **Ps**: Pressure inside air tank Air tank before discharging [MPa] Rectifier tube in the upstream side Rectifier tube in the downstream side Filter Air : Residual pressure inside air tank Shut off Pressure gauge supply valve or pressure after discharging [MPa] convertor Timer (Clock)

Fig. (2) Test circuit based on JIS B 8390

Pressure recorder

2.3 Flow coefficient CV factor

The United States Standard ANSI/(NFPA)T3.21.3: 1990: Pneumatic fluid power—Flow rating test procedure and reporting method for fixed orifice components

Defines the Cv factor of flow coefficient by the following formula which is based on the test conducted by the test circuit analogous to ISO 6358.

$$Cv = \frac{Q}{114.5\sqrt{\frac{\Delta P(P_2 + P_a)}{T_1}}}$$
 (7)

 ΔP : Pressure drop between the static pressure tapping ports [bar]

P₁: Pressure of the upstream tapping port [bar gauge]

 P_2 : Pressure of the downstream tapping port [bar gauge]: $P_2 = P_1 - \Delta P$

Q: Flow rate [dm³/s standard condition]
 Pa: Atmospheric pressure [bar absolute]
 T1: Upstream absolute temperature [K]

Test conditions are $\langle P_1 + P_2 = 6.5 \pm 0.2 \text{ bar absolute}, T_1 = 297 \pm 5 \text{K}, 0.07 \text{ bar} \leq \Delta P \leq 0.14 \text{ bar}.$

This is the same concept as effective area **A** which ISO 6358 stipulates as being applicable only when the pressure drop is smaller than the upstream pressure and the compression of air does not become a problem.

3. Process fluid control equipment

(1) Conformed standard

IEC60534-2-3: 1997: Industrial process control valves. Part 2: Flow capacity, Section Three-Test procedures

JIS B 2005: 1995: Test method for the flow coefficient of a valve Equipment standards: JIS B 8471: Solenoid valve for water

JIS B 8472: Solenoid valve for steam JIS B 8473: Solenoid valve for fuel oil

(2) Definition of flow characteristics

Av factor: Value of the clean water flow rate represented by m³/s which runs through a valve (equipment for test) when the pressure difference is 1 Pa. It is calculated using the following formula.

$$\mathbf{A}\mathbf{v} = \mathbf{Q}\sqrt{\frac{\rho}{\Delta \mathbf{P}}}$$
 (8)

Av: Flow coefficient [m2]

Q: Flow rate [m³/s]

 ΔP : Pressure difference [Pa]

 ρ : Density of fluid [kg/m³]

(3) Formula of flow rate

It is described by the practical units. Also, the flow characteristics are shown in Graph (2).

In the case of liquid:

$$\mathbf{Q} = 1.9 \times 10^6 \mathbf{A} \mathbf{v} \sqrt{\frac{\Delta \mathbf{P}}{\mathbf{G}}}$$
 (9)

Q: Flow rate [t/min]

Av: Flow coefficient [m2]

 ΔP : Pressure difference [MPa]

G: Relative density [water = 1]

In the case of saturated aqueous vapor:

$$Q = 8.3 \times 10^6 Av \sqrt{\Delta P(P_2 + 0.1)}$$
(10)

Q: Flow rate [kg/h]

Av: Flow coefficient [m2]

 ΔP : Pressure difference [MPa]

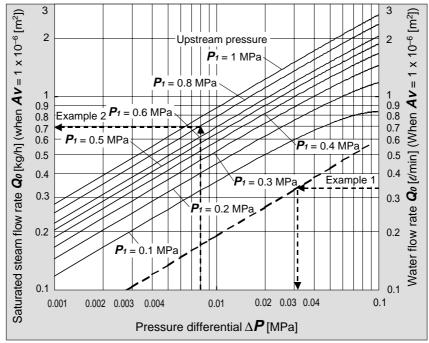
 P_1 : Upstream pressure [MPa]: $\Delta P = P_1 - P_2$

P₂: Downstream pressure [MPa]

Conversion of flow coefficient:

 $Av = 28 \times 10^{-6} Kv = 24 \times 10^{-6} Cv$ (11)

Here,


Kv factor : Value of the clean water flow rate represented by m³/h which runs through a valve

at 5 to 40°C, when the pressure difference is 1 bar.

Cv factor (Reference values): Figures representing the flow rate of clean water by US gal/min which runs

through a valve at 60°F, when the pressure difference is 1 lbf/in² (psi).

Value is different from **Kv** and **Cv** factors for pneumatic purpose due to different test method.

Graph (2) Flow characteristics

Example 1)

Obtain the pressure difference when water 15 [ℓ /min] runs through a solenoid valve with an $\mathbf{A}\mathbf{v} = 45 \times 10^{-6}$ [m²]. Since $\mathbf{Q}_0 = 15/45 = 0.33$ [ℓ /min], according to Graph (2), if reading $\Delta \mathbf{P}$ when \mathbf{Q}_0 is 0.33, it will be 0.031 [MPa].

Example 2)

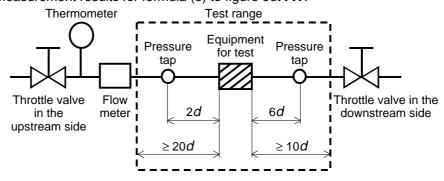
Obtain the saturated steam flow rate when $P_1 = 0.8$ [MPa], $\Delta P = 0.008$ [MPa] with a solenoid valve with an $Av = 1.5 \times 10^{-6}$ [m²].

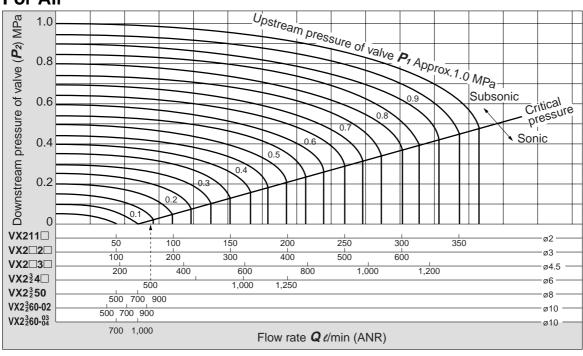
According to Graph (2), if reading \mathbf{Q}_0 when \mathbf{P}_1 is 0.8 and $\Delta \mathbf{P}$ is 0.008, it is 0.7 [kg/h]. Hence, the flow rate $\mathbf{Q} = 0.7 \times 1.5 = 1.05$ [kg/h].

(4) Test method

Attach a test equipment with the test circuit shown in Fig. (3). Next, pour water at 5 to 40° C, then measure the flow rate with a pressure difference of 0.075 MPa. However, the pressure difference needs to be set with a large enough difference so that the Reynolds number does not go below a range of 4 x 10^{4} .

By substituting the measurement results for formula (8) to figure out Av.

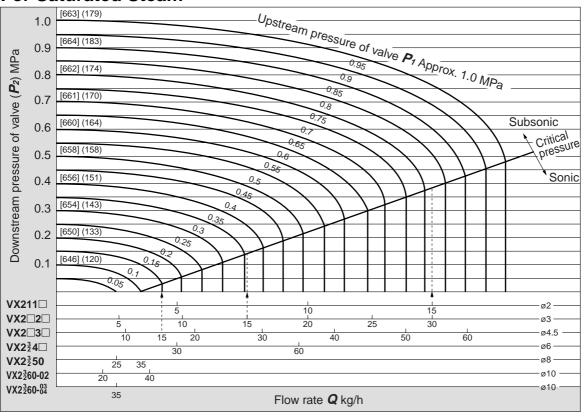



Fig. (3) Test circuit based on IEC60534-2-3, JIS B 2005

Flow Characteristics

Note) Use this graph as a guide. In the case of obtaining an accurate flow rate, refer to pages 10 through to 14.

For Air


How to read the graph

The sonic range pressure to generate a flow rate of 500 t/min (ANR) is

P1 Approx. 0.14 MPa for a ø6 orifice (VX2 $^3_24\square$) and

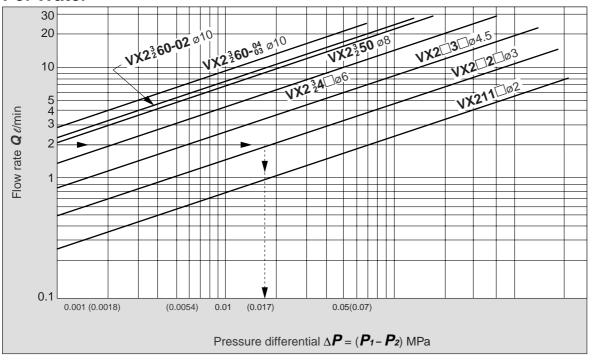
P₁ Approx. 0.3 MPa for a Ø4.5 orifice (VX2\subseteq 3\subseteq).

For Saturated Steam

Figures inside [] indicate the saturated steam holding heat (kcal/kg). Figures inside () indicate the saturation temperature (°C).

How to read the graph

The sonic range pressure to generate a flow rate of 15 kg/h is


P₁ Approx. 0.15 MPa for ø4.5 orifice (VX2□3□S), P₁ Approx. 0.37 MPa for ø3 orifice (VX2□2□S), and

P₁ Approx. 0.82 MPa for ø2 orifice (VX211□S). The holding heat slightly differs depending on the pressure P₁, but at 15 kg/h it is approximately 9700 kcal/h.

Flow Characteristics

For Water

How to read the graph When a water flow of 2 ℓ min is generated, ΔP Approx. 0.017 MPa for a valve with ø3 orifice (VX212 \square , 222 \square , 232 \square).