Series CEU/Series CE

Counter/Extension Cable

Multi-counter

High precision stroke reading cylinder

If the distance between high precision stroke reading cylinder and multi-counter is over 23 meter, use transmission box. (CE1-H0374)

BCD Connector Specifications
Model (counter side):
DX10M-36S (made by Hirose Electric Co., Ltd.)
Connector model:
DX30AM-36P (made by Hirose Electric Co., Ltd.)

Please consult with SMC separately for a BCD cable with connector.

CEP1
CE1

Series CEU5

Multi-counter/Specifications

Model	CEU5	CEU5-D	CEU5P	CEU5P-D	CEU5B	CEU5B-D	CEU5PB	CEU5PB-D
Type	Multi-counter							
Mounting	Surface mounting (DIN rail or Screw stop)							
Operating system	Adding - subtracting type							
Operation mode	Operating mode, Data setting mode, Function setting mode							
Reset system	External reset terminal							
Display system	LCD (With back light)							
Number of digits	6 digits							
Memory holding \{Storage medium\}	Setting value (always held), Count value (Hold/Non-hold switching), \{E²ROM (Warning display after writing approx. 800,000 times: E2FUL)\}							
Input signal type	Count input, Control signal input (Reset, Hold, Bank selection)							
Count input	No-voltage pulse input							
Pulse signal system	90° phase difference input *1/ UP/DOWN separate input*2							
Counting speed	100 kHz *1							
Control signal input	Voltage input (12 VDC or 24 VDC)							
Sensor power supply	10.8 to 13.2 VDC, 60 mA							
Output signal type	Preset output, Cylinder stop output				Preset output, Cylinder stop output, BCD output			
Preset output configuration	Compare/Hold/One-shot (100 ms fixed pulse)							
Output type	Separate 5 point output/Binary code output							
Output delay time	5 ms or less (for normal output)							
Communication system	RS-232C							
Output transistor mode	NPN open collector Max 30 VDC, 50 mA		PNP open collector Max 30 VDC, 50 mA		NPN open collector Max 30 VDC, 50 mA *3		PNP open collector Max 30 VDC, 50 mA *3	
Power supply voltage	90 to 264 VAC	21.6 to 26.4 VDC	90 to 264 VAC	21.6 to 26.4 VDC	90 to 264 VAC	21.6 to 26.4 VDC	90 to 264 VAC	21.6 to 26.4 VDC
Power consumption	20 VA or less	10 W or less	20 VA or less	10 W or less	20 VA or less	10 W or less	20 VA or less	10 W or less
Withstand voltage	Between case and AC line: 1500 VAC for 1 min . Between case and signal ground: 500 VAC for 1 min .							
Insulation resistance	Between case and AC line: $500 \mathrm{VDC}, 50 \mathrm{M} \Omega$ or more							
Ambient temperature	0 to $50^{\circ} \mathrm{C}$ (No freezing)							
Ambient humidity	35 to 85\% RH (No condensation)							
Noise resistance	Square wave noise from a noise simulator (pulse duration $1 \mu \mathrm{~s}$) between power supply terminals $\pm 2000 \mathrm{~V}, \mathrm{I} / \mathrm{O}$ line $\pm 600 \mathrm{~V}$							
Shock resistance	Endurance 10 to 55 Hz ; Amplitude $0.75 \mathrm{~mm} ; \mathrm{X}, \mathrm{Y}, \mathrm{Z}$ for 2 hours each							
Impact resistance	Endurance $10 \mathrm{G} ; \mathrm{X}, \mathrm{Y}, \mathrm{Z}$ directions, 3 times each							
Weight	350 g or less							

*1) 90° phase difference input

$\left.\begin{array}{l}\text { A: } \\ B: \\ C: \\ D: \\ t: 10 \mu \mathrm{sec} \text { or more required }\end{array}\right\} 2.5 \mu \mathrm{sec}$ or more required
Counting speed $\begin{aligned} f=\frac{1}{t}=\frac{1}{10 \times 10^{-6}} & =100000 \mathrm{~Hz} \\ & \cong 100 \mathrm{kHz}\end{aligned}$

* 2) UP/DOWN input

Input wave form conditions: At a maximum of 100 kHz , the UP/DOWN wave form should be as shown below.

* 3) 15 mA when BCD is output.

Multi-counter/Dimensions

Wiring with External Equipment

<Wiring with multi counter CEU5>

1. Wiring of power source for driving counter For power source for driving counter, use the one with 90 to $264 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ or 21.6 to 264 VDC, 0.4 A or more.
2. Wiring for control signal input (Selection among Reset, Hold, Bank)
Make each control signal to be the transistor which can run more than 15 mA or the contact output. Input time for reset signal should be more than 10 ms . Bank selection and hold will function only when the input signal is applied.
COM is common to each signal input. Applicable to NPN and PNP input. Use 24 VDC or 12 VDC for the power source of COM. Connect DCwhen PNP is applied, and DC+ when NPN is applied.

3. Output circuit

There are two outputs, the NPN open collector and the PNP open collector.
The maximum rating is $30 \mathrm{VDC}, 50 \mathrm{~mA}$. Operating the controller by exceeding this voltage and amperage could damage the electric circuit.
Therefore, the equipment to be connected must be below this rating.

Model	CEU5 \square - \square	CEU5P \square - \square
	NPN transistor output	PNP transistor output
Connection method		

* However, the COM of the input circuit and the COM of the output circuit are electrically insulated from each other.

Series CEU

CEU5 Operation
Parts description

Display detail

Key and Functions

Key	Functions
MODE	Changes the mode. In any given condition, it shifts to the next mode. Does not write data.
SEL.	Shifts the cursor to the next item. Does not write data.
SET	Writes displayed data into the memory when setting.
RIGHT	Shifts the cursor to the right when setting numerical values.
LEFT	Shifts the cursor to the left when setting numerical values.
UP	Changes the contents of a setting. Increases the value when setting numerical values.
DOWN	Changes the contents of a setting. Decreases the value when setting numerical values.

[^0]Mode cycle using mode key

Basic Operation

\(\left.\begin{array}{|ll}- SET key \& : In any of the conditions (1) through (5), this writes the display

data into the memory and shifts to (1).\end{array}\right\}\)| - SEL. key | : Shifts to the next item, but does not write data.
 - MODE key
 : In any given condition, this shifts to the next mode, but does
 not write data. |
| :--- | :--- |
| - Direction keys: LEFT/RIGHT keys shift the digits, and UP/DOWN keys
 increase or decrease numerical values. | |

1. Explanation of display in count mode

Normal output display
Displays current output bank
Binary output display
Displays only when matched with preset

Display of binary output selection
2. Setting of preset mode

Setting the preset values

- Shift the digits with the LEFT/RIGHT keys, and increase or decrease the numerical values with the UP/DOWN keys. - Shift to the next item with the SEL. key.

Setting the output configuration

(5)

- Switch to 1SHOT, HOLD or COMPARE with the UP/DOWN keys.
- Store the setting with the SET key
- The SEL. key only shifts to another item without storing the setting

Series CEU

CEU5 Operation

3. Explanation of settings in the function mode

If the UP/DOWN keys are pressed when an item name is flashing, it shifts to another setting item. When the SEL. key is pressed, the cursor shifts and it is possible to change the content of the setting for the item which is being displayed.

- The setting mode for stand-by time until stop output is commanded is selected by pressing the SEL key while STOP is flashing.
- Set numerical values with the direction keys.
- The unit is 0.1 sec .
- Store the setting with the SET key.
- The SEL. key only shifts the cursor without storing the setting.

- The output system setting mode is selected by pressing the SEL. key while OUTPUT is flashing
- Select normal output or binary output with the UP/DOWN keys.
- Store the setting with the SET key.
- The SEL. key only shifts the cursor without storing the setting.

- The input type setting mode is selected by pressing the SEL. key while INPUT is flashing.
- Select phase difference input with the UP/DOWN keys. (2PHASE) or separate input (UP/DOWN) with the UP/ DOWN keys.
- Store the setting with the SET key.
- The SEL. key only shifts the cursor without storing the setting.

- The count value backup setting mode is selected by pressing the SEL. key while BACKUP is flashing.
- Store the setting with the SET key.
- The SEL. key only shifts the cursor without storing the setting.

Series CE

Glossary (Functions of CEU5)

BCD Output

This is a system which expresses one digit of a decimal number with a 4 digit binary number.
The count value is expressed by the ON/OFF state of each BCD output terminal. In the case of 6 digits, 24 terminals are required.

The relation between decimal numbers and BCD codes is shown in the table below.

Decimal no.	0	1	2	3	4	5	6	7	8	9
BCD	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001

Ex.) 1294.53 is expressed as follows.
000100101001010001010011

RS-232C

This is the interface standard for the serial transmission method, which is standard equipment on a personal computer.

Prescale Function

This function allows free setting of how many millimeters will indicate one pulse.

Binary Output

31 point preset output is possible without bank switching, by means of binary system output from a 5 point output terminal. Cylinder stop output is used as the readout release signal.

The coincident preset number is expressed as a 5 digit binary number.

Bank Function

5 points of preset output are possible simultaneously, however, a maximum of 20 types of work discrimination, etc. can be performed by using the 5 points of preset values as one of a maximum of four quadrats, and switching its use during operation.

For example, when bank 2 is selected, presets 6 through 10 are valid and when the count value coincides with the setting value of 6 through 10, the respective output terminals 1 through 5 are turned ON.

Bank Switching Correspondence

Bank no.	BANK2	BANK1
$\mathbf{1}$	OFF	OFF
$\mathbf{2}$	OFF	ON
$\mathbf{3}$	ON	OFF
$\mathbf{4}$	ON	ON

Series CE

Glossary (Functions of CEU5)

Display Offset Function

Normally the count value returns to " 0 " after resetting, but with this function, the initial value can be set to any desired value.

Hold Function

When "hold" is input, the counter holds the current count value in memory. Next, when the count value is read into a PLC which uses serial or BCD output, etc., the count value that was held can be read in, even if there is a time lag.

Setting the Tolerances of Preset Values

In the current model CEU1, the preset value tolerances could only be set as \pm, but now it has become possible to set an upper and lower limit of $+\bigcirc \mathrm{mm}$ and $-\triangle \mathrm{mm}$.

By including preset tolerance setting, superior performance is exhibited in parts inspections, etc. In a workpiece to be measured, there are tolerances which assure a good product. For example, in the case of $10_{-0.02}^{+0.05}$, the CEU5 allows these tolerances to be input as they stand. If the workpiece is within tolerances the OK signal is sent.
On the other hand, in ordinary counters, no. 1 is set to 9.98 and no. 2 is set to 10.06 , and if no. 1 is ON and no. 2 is OFF, an acceptance decision is made. 2 points of output are used in order to check whether or not the product is within dimension tolerances. In this example, one preset of the CEU5 performs the same function as two presets of an ordinary counter.
<Simple input as per drawing dimensions> Tolerances can be set with the preset value.

Count Value Protection

In the past, the count value returned to "0" when the power supply was cut off, but this function holds the previous value even after a power failure. This function can be switched between active and inactive settings.

[^0]: In the explanations of the operating method, references to "Direction keys" indicate the 4 keys RIGHT, LEFT, UP and DOWN.

